
Automatic Generation of Problems and
Explanations for an Intelligent Algebra Tutor

Eleanor O’Rourke1, Eric Butler2,
Armando Dı́az Tolentino2, and Zoran Popović2

1 Northwestern University, Evanston IL, USA
eorourke@northwestern.edu

2 University of Washington, Seattle WA, USA
{edbutler,ajdt,zoran}@cs.washington.edu

Abstract. Intelligent tutors that emulate one-on-one tutoring with a
human have been shown to effectively support student learning, but these
systems are often challenging to build. Most methods for implementing
tutors focus on generating intelligent explanations, rather than generat-
ing practice problems and problem progressions. In this work, we explore
the possibility of using a single model of a learning domain to support the
generation of both practice problems and intelligent explanations. In the
domain of algebra, we show how problem generation can be supported
by modeling if-then production rules in the logic programming language
answer set programming. We also show how this model can be authored
such that explanations can be generated directly from the rules, facili-
tating both worked examples and real-time feedback during independent
problem-solving. We evaluate this approach through a proof-of-concept
implementation and two formative user studies, showing that our gen-
erated content is of appropriate quality. We believe this approach to
modeling learning domains has many exciting advantages.

Keywords: ITS · Problem Generation · Answer Set Programming.

1 Introduction

Over the past fifty years, researchers have developed robust artificial intelligence
systems that can emulate one-on-one tutoring with a human [3, 6, 8, 29]. These
intelligent tutoring systems provide adaptive problem progressions and person-
alized feedback in a variety of domains, and have been shown to produce strong
learning gains in classroom studies [10, 30]. However, these systems are often
challenging and time-consuming to build. Researchers have explored a variety of
approaches for modeling learning domains, resulting in the development of cog-
nitive tutors [3, 6], constraint-based tutors [16, 18], example-tracing tutors [9],
and ASSISTments [8]. However, these approaches all focus on optimizing the
modeling and authoring of intelligent feedback, rather than of problems and
problem progressions, an area which has been highlighted as interesting for fu-
ture development [11]. While a variety of problem-generation approaches have



2 E. O’Rourke et al.

been developed and studied [19, 26, 14], most depend on models of the learning
domain that are very different than those used to generate intelligent explana-
tions, making it difficult to integrate them into existing tutoring systems.

In this work, we explore the possibility of using a single underlying model
to generate both practice problems and intelligent explanations. We build on
prior work in problem generation [2, 5, 19, 28] by using the the logic program-
ming language answer set programming (ASP) to model if-then production rules
similar to those used by cognitive tutors in the domain of algebra. We show how
this model can be used to generate algebra problems and all valid solutions
to those problems. We also present a new method for automatically generating
step-by-step explanations directly from the ASP model. We show how our expla-
nation content can be used to create worked examples, feedback during tutored
problem-solving, and a progression that gradually fades between the two.

We evaluate our approach through a proof-of-concept implementation and
two formative user studies. First, we developed an application called the Alge-
bra Notepad that embeds the problems, solutions, and explanations generated
from our model, demonstrating how our content can be used to implement an
intelligent tutor. Next, we evaluated the application through two user studies.
In a study with 57 Mechanical Turk workers, we found that participants solve
problems more accurately and efficiently after practicing with our tutor, demon-
strating that the generated solutions and explanations are understandable. In a
study with seven eighth-grade students, we found that the tutor helps learners in
our target population solve problems successfully. This approach for generating
problems and explanations from a single domain model has many advantages,
and could support robust content generation for tutoring systems in the future.

2 Background

2.1 Modeling Learning Domains

A variety of approaches for designing and implementing intelligent tutoring sys-
tems (ITS) have been explored. Cognitive tutors provide the most sophisticated
form of intelligent feedback. They represent knowledge using production rules
that define if-then relationships which capture all knowledge needed to solve
problems in a target learning domain, allowing the computer to solve problems
step-by-step along with the student [3, 6]. Cognitive tutors detect errors when
the student’s action does not match any production rule in the model, and most
include explicitly programmed “buggy” production rules that match common
mistakes and misconceptions so that these can be explained [3]. Cognitive tutors
are complex, and typically include as many as 500 production rules [4].

Constraint-based tutors are another type of system designed to help stu-
dents identify and learn from mistakes [18]. These tutors model learning domains
as sets of pedagogically important constraints [14, 17, 16]. Rather than tracing
student actions, constraint-based tutors analyze the student’s current state to
identify violations of model constraints [17]. These tutors typically require less



Automatic Content Generation for an Intelligent Algebra Tutor 3

authoring effort than cognitive tutors, but can only provide feedback about con-
straint violations rather than also providing goal-oriented feedback [16].

Finally, peudo tutors exhibit many of the behaviors of ITS without requiring
complex modeling. Example-tracing tutors are created by demonstrating correct
solutions and common mistakes for specific types of problems. These demon-
strations are used to create a behavior graph that can trace learner behavior
and provide feedback [9]. A downside of this approach is that content must be
demonstrated or authored for each problem type; in contrast, a cognitive tutor’s
production rules can generalize across many different problem types [9].

2.2 Explanation Generation

Most tutors use hand-authored templates to generate explanations. Cognitive
tutors produce next-step hints and feedback by associating an explanation tem-
plate with each correct and buggy production rule in the model [4, 3, 29]. To fill
the templates with appropriate problem-specific content, each problem must also
be labeled to indicate which phrases should be inserted into the template [4].
The Cognitive Tutor Authoring Tools (CTAT) were developed to support effi-
cient authoring of both model-tracing cognitive tutors [12] and example-tracing
tutors [9]. Example-tracing tutor authors can annotate hints and feedback mes-
sages for specific problems in the system [9]. In constraint-based tutors, hand-
authored feedback messages are attached directly to the constraints [17], and
can either be given after each student action or at the end of the problem [16].
In contrast to cognitive tutors, these explanations are problem-independent.

2.3 Problem Generation

Researchers have explored problem generation for a variety of domains including
word problems [19], natural deduction [1], procedural problems [2], and embed-
ded systems [23]. Most approaches are template-based; given a general template
for a type of problem, they generate more problems that fit the template. These
templates can be generated automatically [1], semi-automatically [2], or manu-
ally [23]. While many of these approaches use exhaustive search or logical rea-
soning to generate problems, others use logic programming languages to model
domains and generate problems. For example, Andersen et al. use the code cover-
age toolkit Pex, built on the Z3 SMT solver, to generate problems for procedural
mathematics (e.g., long division) [2]. Others use ASP directly for domains such
as word problems [19] or educational math puzzles [28, 5].

Despite this extensive research on problem generation, most intelligent tutor-
ing systems still rely on hand-authored problems. In a recent paper discussing
areas for ITS improvement, Koedinger et al. highlight automated problem gen-
eration as an interesting area for future development [11]. In the domain of
constraint-based tutors, Martin and Mitrovic developed an algorithm that can
generate problems from a set of target constraints [14, 13]. However, since the do-
main models used to generate problems are different than those used to generate
explanations, integrating problem generation into tutors is non-trivial.



4 E. O’Rourke et al.

3 Implementation Approach

In this work, we explore using a single underlying model to generate both prob-
lems and explanations for an intelligent tutor in the domain of algebra. Our core
approach is to model valid algebraic operations using answer set programming
(ASP), which facilitates generating both new problems and all valid solutions
to those problems. During the modeling process, we structure the ASP program
such that explanations for each solution step can be generated directly from the
code itself. We note that if a tutoring system has access to all valid solutions to
a target problem, it can trace a learner’s steps and compare them to those in
the solutions to detect errors. Furthermore, given step-by-step explanations of
each solution, a tutor can provide worked examples and also use explanations of
specific steps to provide feedback in response to learner mistakes. In this section,
we first describe our approach for modeling algebra in ASP, then discuss how
we generate problems, solutions, and explanations from this model. Finally, we
describe how we can use the ASP program to automatically detect and explain
a class of misconceptions related to applying algebraic operators incorrectly.

3.1 Modeling Algebra in ASP

ASP programs define facts and rules that are represented in first-order logic.
Answer set solvers search the space of truth assignments for each logical state-
ment in an ASP program to produce satisfying solutions called answer sets,
which define a set of self-consistent statements that identify a valid state of the
world. ASP programs typically include three types of rules: choice rules that
allow the solver to guess facts that might be true, deductive rules that allow the
solver to deduce new facts from established or guessed facts, and finally integrity
constraints that forbid certain solutions.

To solve an algebraic equation, a learner must isolate a variable on one side by
applying a sequence of operators, such as combining terms or dividing both sides
by a constant. In ASP, we model operators using deductive rules and integrity
constraints. Then, we use event calculus [25], a logical formulation that can rep-
resent the state of the world at multiple time steps, to model the problem-solving
process. For each operator, we use deductive rules to define a set of precondi-
tion predicates that must hold for that operator to applicable at a given time
step. Then, we use additional deductive rules to describe how the equation will
change on the next time step if that operator is applied. For example, consider
the operator for adding two like terms on the same side of the equation. This
operator is only applicable when a set of preconditions hold: two terms must
be on the same side of the equation, they must be added, and they must be
monomial terms of the same degree. If these hold, the operator can be applied
by adding the coefficients of the two monomial terms to produce a single term.

Most algebra problems have many valid solutions. In general, textbooks rec-
ommend first simplifying by canceling and combining terms, and then rearrang-
ing terms to isolate a variable on one side of the equation. We therefore group
operators into five classes ordered by precedence – cancel, combine, rearrange,



Automatic Content Generation for an Intelligent Algebra Tutor 5

move, and expand – and define integrity constraints that force the program to ex-
plore the classes of operators in this priority order. Finally, integrity constraints
are used to ensure that the final step is a valid solution.

3.2 Problem and Solution Generation

To generate new problems and their solutions from the ASP program, we define
choice rules that set the initial problem configuration, the operators used in the
solution, and predicates describing which operator is chosen at which time. An-
swer set solves also require that you define a finite search space, so we constrain
both the size of the equations and the number of steps in the solution. In prac-
tice, novices focus on relatively simple problems, so we constrained generation
to equations with a maximum of six terms per side and a maximum solution
length of four steps. An answer set calculated on our ASP program produces
both a problem and a sequence of valid operators that solves the problem.

This allows us to generate problem-solution pairs, but we want to generate all
valid solutions to each problem. This requires some subtlety because generating
all solutions is in a higher complexity class than generating a single solution.
ASP is capable of solving this class of problem, and previous work has explored
the specific challenge of generating math puzzles with all solutions [27], but
implementing this type of model is technically challenging. Since we do not need
to enforce any constraints over all problem solutions, we can take a simpler two-
step approach. First, we generate a set of problem-solution pairs, and then we
use a second ASP program to generate all shortest solutions for each problem.

3.3 Explanation Generation

Our approach for generating step-by-step explanations for each problem is to
name the rules and predicates in the ASP program in such a way that expla-
nations can be generated directly from the program itself. This allows us to
produce explanations without having to write any problem- or solution-specific
content, but requires structuring the ASP program differently than we would if
we were not generating explanations from the code. Our explanations have two
parts: we describe each operator that is applied to the equation, and we also
provide strategy explanations that describe the priority of operator classes.

For operators, we first describe why an operator can be applied to the equa-
tion at this step, and then describe how to modify the equation to apply the
operator. We generate explanation text from the declarative rules defined for
each operator the ASP program. The precondition predicates in the operator
rule define precisely why the operator can be applied, but we typically do not
want to explain all predicates to the learner. For example, a predicate that states
that a term cannot be added to itself is necessary for the solver, but not for the
learner. To handle these cases, we add an underscore to the beginning of pred-
icate names that should not be explained. More importantly, we may want to
describe multiple predicates through one high-level explanation. To handle these
cases, we define our rules in ASP using a tiered approach that defines multiple



6 E. O’Rourke et al.

Algorithm 1 ASP rules used to define the add two terms operator. The precon-
ditions are separated into two tiers, one used to generate a high-level description
of the precondition and a second used to provide a more detailed description.
The second tier is also used to generate explanations for rules that almost apply.

applicable(T, weCanSimplifyByAddingTheseTwoTermsTogether(L, R))

:- weAreAddingTwoTermsWithVariablesThatHaveTheSameDegree(T, L, R).

weAreAddingTwoTermsWithVariablesThatHaveTheSameDegree(T, L, R)

:- _areDistinctNodes(L, R), isMonomial(T, L), isMonomial(T, R),

areOnTheSameSideOfTheEquation(L, R),

areBeingAdded(T, L, R), haveEqualDegrees(T, L, R),

_isNotZero(T, L), _isNotZero(T, R).

levels of explanation detail for each operator. The first level produces a general
explanation of why the rule applies, while the second level describes each of the
predicates that must hold for the rule to apply. Algorithm 1 shows the ASP code
that we used to model the add like terms operator in our system, which includes
multiple rule definitions that provide different levels of explanation.

We also wanted to explain the problem-solving strategy of first simplifying the
equation and then rearranging terms, which is represented through the priority
of the five operator classes. We designed a dialog that presents these classes
through a sequence of question-answer pairs, which start by asking whether an
operator in each class can be applied (e.g. “can we combine?”). This question is
answer either no (“no we cannot combine”) or yes (“yes we can combine these
terms”). In cases where an operator class can be applied multiple times, we note
this in the response (“we can combine multiple terms”). This text is generated
from five templates, one for the question and one for each possible response. The
templates are populated with the current operator class and the ids of the terms
to which the operator is applied. Figure 1 shows the sequence of explanations
generated for applying the combine like terms operator to an example equation.

Our approach for automatically generating explanations requires authoring
the ASP program with these explanations in mind, by abstracting predicates into
multiple levels and naming the rules and predicates such that they will produce
clear and understandable descriptions. While this requires significant up-front
authoring effort, once the program is written explanations can be automatically
generated for any problem and solution generated by the model.

3.4 Misapplied Rules

One potential benefit of this modeling approach is that it provides an opportu-
nity to automatically generate rules that describe learner misconceptions. Many
intelligent tutors detect and respond to common misconceptions, typically using
hand-authored “buggy” production rules [3, 17]. One class of misconceptions is
misapplied rules. For example, given the equation 2x∗5x = 100, a student could



Automatic Content Generation for an Intelligent Algebra Tutor 7

Fig. 1: An explanation sequence generated for the add like terms operator that
describes problem-solving strategy and how and why the operator can be applied.

mistakenly think the add-like-terms operator applies to 2x and 5x, since they
are monomials of the same degree on the same side of the equation. However,
they are being multiplied, not added, so the operation is not valid. Modeling
algebraic operators in ASP allows us to automatically detect and reason about
a subset of such misapplied rules. Each operator has several predicates which
make up the precondition. If nearly all the predicates hold (e.g., there are two
terms, both monomials of same degree) but one such predicate is missing (e.g.,
terms are not being added), then such a rule almost applies.

Given the set of predicates that define when an operator is applicable, we
can produce an exhaustive list of all rules that almost apply for a given equation
by searching for those that apply when a single predicate is omitted from the
rule body. As with correctly applied operators, we can automatically generate
explanations for operators that almost apply from the rules themselves. We take
the name of the omitted predicate and negate it (e.g., “are being added” in
Algorithm 1 becomes “are not being added”). The structure and consistency
of our rule names makes this negation straightforward, placing “not” after the
first “is” or “are” that appears in the rule name. To explain a rule that almost
applies, the system generates the text “it looks like we can 〈operator name〉, but
we cannot because 〈negated predicate that was omitted〉” using a template.

Traditionally, buggy production rules are hand-authored. In contrast, our
modeling approach allows us to automatically detect a wide set of misapplied
rules. While these only cover a subclass of potential misconceptions, they can



8 E. O’Rourke et al.

be generated fully automatically. We hypothesize that, with data from learners,
it would be possible to determine which of the generated misapplied rules are
likely to occur in practice. Then, such rules could be used to preemptively explain
common misconceptions or provide feedback in response to learner mistakes.

4 Formative Evaluation

The central contribution of this work is our approach for generating problems,
solutions, and step-by-step explanations from a single model of a learning do-
main. To evaluate the content that can be produced using this approach, we
first developed a proof-of-concept implementation in the domain of algebra. We
modeled algebraic problem solving in ASP as described above, and then de-
veloped an interactive algebra tutor on top of the content generated by this
model. We show that our tutor can provide step-by-step worked examples, can
give real-time feedback during independent problem solving, and can support a
problem progression that gradually fades between the two types of scaffolding.
To evaluate the proof-of-concept tutor and its content, we conducted formative
user studies with Mechanical Turk workers and eighth-grade students.

4.1 Proof-of-Concept Implementation

Many design decisions go into the development of any tutoring system [29]. Our
goal in this work is not to study any particular instructional approach, but rather
to show the variety of scaffolds that can be implemented with our generated con-
tent. We developed an interactive tutor we call the Algebra Notepad that uses a
gesture-based interface to emulate solving equations on paper (see Figure 2). The
application uses problems, solutions, and explanations that were generated by
our ASP model offline. We implemented a scaffolded problem progression that
gradually fades between step-by-step demonstrations of correct solutions [15, 20,
7] and independent problem solving with mistake feedback [3, 6, 29], a pedagog-
ical approach known as faded worked examples [22, 21, 24]. Our fading policy
has five levels. In Level 1, learners walk through example solutions step-by-step,
viewing our generated strategy and operator explanations (see Figure 1). In
Level 5, learners solve problems independently while the system compares their
steps to the correct solutions. The system displays sparkly stars in response to
correctly applied operators, and gives tiered feedback messages when steps are
incorrect. The remaining three levels blend these extremes, for example showing
explanations but requiring the learner to perform the operations on their own.

4.2 Mechanical Turk Study

First, we conducted study on Mechanical Turk with the goal of recruiting a rela-
tively large number of users to try the Algebra Notepad application. We used this
study to evaluate whether our scaffolds helped participants solve problems, and
whether the generated explanations are understandable. We generated a static



Automatic Content Generation for an Intelligent Algebra Tutor 9

(a) (b)

Fig. 2: Screenshots of the Algebra Notepad application. The interface displays
each step on a separate line, and learners manipulate equations using gestures,
as shown in the actions bar in Figure (a). Figure (b) shows a replace gesture.

progression of nine problems for this study, six of which required a minimum of
four steps to reach a solution and three of which required three steps. We used
the fading policy described in the previous section; the progression started with
one worked example at Level 1, followed by two problems each at Level 2, 3, 4
and 5. Participants took a three-problem test before and after using the Algebra
Notepad, and completed a short survey about the experience at the very end.

We collected data from 57 Mechanical Turk workers, who provided informed
consent and were paid for their time. First, we measured whether their problem-
solving performance improved after practicing with the Algebra Notepad. A re-
peated measures ANOVA showed that participants performed better on the post-
test (F (1, 56) = 8.02, p < 0.01), with a mean score of 2.4 out of three correct
on the pre and 2.6 on the post. We also counted the number of steps used in
correct solutions, and found that participants used fewer steps on the post-test
(F (1, 50) = 80.06, p < 0.0001), with a mean of 5.1 steps per problem on the
pre and 4.3 steps on the post. These findings suggest that practicing with the
algebra tutor improved the correctness and efficiency of participant’s solutions.

We also analyzed log data from the Algebra Notepad to measure how par-
ticipants performed during independent problem solving (fading Level 5 ). We
found that participants applied the correct operator on the first try in 84.5%
of cases. Using tiered feedback, they applied the correct operator on the sec-
ond or third try in 10.3% of cases, and only needed the system to perform the
operation for them in 5.1% of cases. This shows that the generated feedback
helped participants reach correct solutions most of the time. On the final survey,
participants agreed that the explanations “were clear and understandable” and
“helped me solve problems”, rating these statements an average of 4.8 and 4.7 on
a six-point Likert scale respectively. When responding to a question asking what
they thought of the explanations, one participant said “I thought they were great.
It has been years since I’ve done algebra and the explanations on the notepad
refreshed by memory and improved my ability to solve problems correctly.”



10 E. O’Rourke et al.

4.3 Student Study

Since adults are not the target population of our Algebra Notepad, we conducted
a second informal user study with seven eighth-grade students at a local Boys
& Girls club to confirm that learners can successfully interact with the content
generated with our model. In this study, students used the Algebra Notepad ap-
plication to complete a static progression of 20 problems. The first nine problems
in the progression were identical to those used in the Mechanical Turk study, and
the same fading policy was used. However, we added an additional 11 problems
at Level 5, where students worked on problems independently and were given
feedback in response to mistakes as needed. The seven students all completed
the progression of 20 problems. We analyzed their log data, and saw that for
the 13 problems in Level 5 that required independent problem-solving, students
applied the correct operator on the first try in 81.4% of cases. The applied the
correct operator on the second or third try, with the help of the tiered feedback,
in 16.3% of cases. They only needed the system to apply the correct operator in
2.3% of cases. This suggests that most students were able to use the explanations
and corrective feedback generated through our model to identify and apply the
correct operators while solving algebra problems.

5 Discussion and Conclusion

In this work, we contribute a new approach for using a single underlying model
of a learning domain to generate problems, step-by-step solutions, and explana-
tions. We describe our process for modeling algebra in answer set programming,
and show how the model can be used to generate new problems and all solutions
to those problems. We also introduce a new method for automatically generating
explanations directly from the model, and show how this content can be used to
support step-by-step worked examples, feedback in response to mistakes during
independent problem solving, and a progression that gradually fades between
the two. We evaluated our approach by developing a proof-of-concept imple-
mentation of an intelligent tutor that uses content generated by our model, and
we show that both adult users and eighth-grade students can interact with our
explanations to successfully solve algebra problems.

We believe this modeling approach has exciting potential for supporting ro-
bust automated content generation for intelligent tutoring systems in the future.
While this work focuses on the domain of algebra, ASP can be used to model
any domain that can be represented through if-then relationships, where learn-
ers determine when rules or conditions apply and take actions in response. Logic
programming languages have already been used to model diverse learning do-
mains such as math procedures [2], word problems [19], and game puzzles [28, 5].
While this work takes an important first step towards understanding how to con-
struct an intelligent tutor around an ASP model, it has a number of limitations.
We hope future research can continue this line of work, in particular expanding
on our formative evaluation to determine whether content generated using this
approach can effectively support student learning in real-world contexts.



Automatic Content Generation for an Intelligent Algebra Tutor 11

References

1. Ahmed, U.Z., Gulwani, S., Karkare, A.: Automatically generating problems and
solutions for natural deduction. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence. pp. 1968–1975. IJCAI ’13, AAAI Press
(2013), http://dl.acm.org/citation.cfm?id=2540128.2540411

2. Andersen, E., Gulwani, S., Popović, Z.: A trace-based framework for analyz-
ing and synthesizing educational progressions. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 773–782. CHI ’13,
ACM, New York, NY, USA (2013). https://doi.org/10.1145/2470654.2470764,
http://doi.acm.org/10.1145/2470654.2470764

3. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors:
Lessons learned. The Journal of the Learning Sciences 4(2), 167–207 (1995)

4. Anderson, J.R., Pelletier, R.: A development system for model-tracing tutors. In:
Proceedings of the International Conference of the Learning Sciences. pp. 1–8
(1991)

5. Butler, E., Andersen, E., Smith, A.M., Gulwani, S., Popovic, Z.: Automatic game
progression design through analysis of solution features (2015)

6. Corbett, A., Koedinger, K.R., Anderson, J.R.: Intelligent tutoring systems. In:
Helander, M., Landauer, T.K., Prahu, P. (eds.) Handbook of Human-Computer
Interaction, Second Edition, pp. 849–874. Elsevier Science, Amsterdam (1997)

7. van Gog, T., Paas, F., van Merriënboer, J.J.: Process-oriented
worked examples: Improving transfer performance through en-
hanced understanding. Instructional Science 32(1-2), 83–98
(2004). https://doi.org/10.1023/B:TRUC.0000021810.70784.b0,
http://dx.doi.org/10.1023/B%3ATRUC.0000021810.70784.b0

8. Heffernan, N.T., Heffernan, C.L.: The assistments ecosystem: Building a plat-
form that brings scientists and teachers together for minimally invasive research
on human learning and teaching. International Journal of Artificial Intelligence
in Education 24(4), 470–497 (2014). https://doi.org/10.1007/s40593-014-0024-x,
http://dx.doi.org/10.1007/s40593-014-0024-x

9. Koedinger, K.R., Aleven, V., Heffernan, N., McLaren, B., Hockenberry, M.: Open-
ing the door to non-programmers: Authoring intelligent tutor behavior by demon-
stration. In: International Conference on Intelligent Tutoring Systems. pp. 162–174.
Springer (2004)

10. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring
goes to school in the big city. International Journal of Artificial Intelligence in
Education 8, 30–43 (1997)

11. Koedinger, K.R., Brunskill, E., de Baker, R.S.J., McLaughlin, E.A., Stamper, J.C.:
New potentials for data-driven intelligent tutoring system development and opti-
mization. AI Magazine 34(3), 27–41 (2013)

12. Koedinger, K.R., Heffernan, N.: Toward a rapid development environment for cog-
nitive tutors. In: in Proceedigns of the International Conference on Artificial In-
telligence in Education. pp. 455–457. IOS Press (2003)

13. Martin, B., Mitrovic, A.: Automatic problem generation in constraint-based tutors.
In: International Conference on Intelligent Tutoring Systems. pp. 388–398. Springer
(2002)

14. Martin, B.I.: Intelligent Tutoring Systems: The Practical Implementation of
Constraint-Based Modelling. Ph.D. thesis, University of Canterbury (2001)



12 E. O’Rourke et al.

15. McLaren, B.M., Lim, S.J., Koedinger, K.R.: When and how often should worked
examples be given to students? new results and a summary of the current state
of research. In: Love, B.C., McRae, K., Sloutsky, V.M. (eds.) Proceedings of the
30th Annual Conference of the Cognitive Science Society. pp. 2176–2181. Cognitive
Science Society, Austin, TX (2008)

16. Mitrovic, A.: Fifteen years of constraint-based tutors: What we have
achieved and where we are going. User Modeling and User-Adapted Inter-
action 22(1-2), 39–72 (Apr 2012). https://doi.org/10.1007/s11257-011-9105-9,
http://dx.doi.org/10.1007/s11257-011-9105-9

17. Mitrovic, A., Koedinger, K.R., Martin, B.: A comparative analysis of cognitive tu-
toring and constraint-based modeling. In: International Conference on User Mod-
eling. pp. 313–322. Springer (2003)

18. Ohlsson, S.: Constraint-based student modeling. In: Student modelling: the key to
individualized knowledge-based instruction, pp. 167–189. Springer (1994)

19. Polozov, O., O’Rourke, E., Smith, A., Zettlemoyer, L., Gulwani, S., Popović, Z.:
Personalized mathematical word problem generation. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence. IJCAI ’15 (2015)

20. Renkl, A.: Learning from worked-out examples: A study on individual differences.
Cognitive science 21(1), 1–29 (1997)

21. Renkl, A., Atkinson, R.K., Große, C.S.: How fading worked solution
steps works – a cognitive load perspective. Instructional Science 32(1-
2), 59–82 (2004). https://doi.org/10.1023/B:TRUC.0000021815.74806.f6,
http://dx.doi.org/10.1023/B%3ATRUC.0000021815.74806.f6

22. Renkl, A., Atkinson, R.K., Maier, U.H., Staley, R.: From example study to problem
solving: Smooth transitions help learning. The Journal of Experimental Education
70(4), 293–315 (2002), http://www.jstor.org/stable/20152687

23. Sadigh, D., Seshia, S.A., Gupta, M.: Automating exercise genera-
tion: A step towards meeting the mooc challenge for embedded sys-
tems. In: Proceedings of the Workshop on Embedded and Cyber-
Physical Systems Education. pp. 2:1–2:8. WESE ’12, ACM, New
York, NY, USA (2013). https://doi.org/10.1145/2530544.2530546,
http://doi.acm.org.offcampus.lib.washington.edu/10.1145/2530544.2530546

24. Salden, R.J.C.M., Aleven, V.A.W.M.M., Renkl, A., Schwonke, R.: Worked ex-
amples and tutored problem solving: Redundant or synergistic forms of support?
Topics in Cognitive Science 1(1), 203–213 (2008). https://doi.org/10.1111/j.1756-
8765.2008.01011.x

25. Shanahan, M.: The event calculus explained. In: Artificial intelligence today, pp.
409–430. Springer (1999)

26. Singh, R., Gulwani, S., Rajamani, S.: Automatically generating algebra problems.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
(2012)

27. Smith, A., Butler, E., Popović, Z.: Quantifying over play: Constraining undesirable
solutions in puzzle design. In: Procedings of the 8th International Conference on
the Foundations of Digital Games (2013)

28. Smith, A.M., Andersen, E., Mateas, M., Popović, Z.: A case study of expressively
constrainable level design automation tools for a puzzle game. In: FDG ’12: Pro-
ceedings of the Seventh International Conference on the Foundations of Digital
Games. ACM, New York, NY, USA (2012)

29. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial
Intelligence in Education 16, 227–265 (2006)



Automatic Content Generation for an Intelligent Algebra Tutor 13

30. Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy,
D., Weinstein, A., Wintersgill, M.: The andes physics tutoring system: five years
of evaluations. In: In Proceedings of the 12th international conference on Artificial
Intelligence in Education. pp. 678–685. IOS Press (2005)


