
Bringing “High-level” Down to Earth: Gaining Clarity in
Conversational Programmer Learning Goals
Kathryn Cunningham
Northwestern University
Evanston, Illinois, USA

kcunningham@northwestern.edu

Yike Qiao
Northwestern University
Evanston, Illinois, USA

ikaqiao@u.northwestern.edu

Alex Feng
Northwestern University
Evanston, Illinois, USA

alexfeng@u.northwestern.edu

Eleanor O’Rourke
Northwestern University
Evanston, Illinois, USA

eorourke@northwestern.edu

ABSTRACT
As the number of conversational programmers grows, computing
educators are increasingly tasked with a paradox: to teach pro-
gramming to people who want to communicate effectively about
the internals of software, but not write code themselves. Designing
instruction for conversational programmers is particularly challeng-
ing because their learning goals are not well understood, and few
strategies exist for teaching to their needs. To address these gaps,
we analyze the research on programming learning goals of conver-
sational programmers from survey and interview studies of this
population. We identify a major theme from these learners’ goals:
they often involve making connections between code’s real-world
purpose and various internal elements of software. To better under-
stand the knowledge and skills conversational programmers require,
we apply the Structure Behavior Function framework to compare
their learning goals to those of aspiring professional developers.
Finally, we argue that instructional strategies for conversational
programmers require a focus on high-level program behavior that
is not typically supported in introductory programming courses.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Conversational Programmers, Learning Goals, Instructional Design

ACM Reference Format:
Kathryn Cunningham, Yike Qiao, Alex Feng, and Eleanor O’Rourke. 2022.
Bringing “High-level” Down to Earth: Gaining Clarity in Conversational
Programmer Learning Goals. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2022), March 3–
5, 2022, Providence, RI, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3478431.3499370

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499370

1 INTRODUCTION
“Writing programs” is themost frequent learning goal in CS1 courses
[2]. However, recent research has found that not all students who
want to learn about code aspire to author programs. Conversa-
tional programmers seek programming instruction with the goal of
improving their communication and collaboration with software
developers and other technical workers [4, 5, 24]. Conversational
programmers can be found in the growing population of non-majors
taking computing courses [3], particularly in computing-adjacent
majors like Information [7] or Engineering Management [4]. Con-
versational programming skills are relevant for many job roles,
including managers, designers, entrepreneurs, and marketers [24].

Unfortunately, we have evidence that typical introductory pro-
gramming instruction does not meet conversational programmers’
needs. A study of adult learners aiming to improve their technical
communication by studying formal (e.g. coursework) and informal
(e.g. tutorials and forums) programming learning resources found
that this effort often ended in a feeling of failure [24]. A key is-
sue was that the knowledge these learners sought was not what
they found. They wanted “conceptual” and “big picture” knowledge
about capabilities and applications of programming technologies,
but instead were lost in details about syntax and semantics [24].

As the number of software engineers grows [16], the number
of professionals needing conversational programming skills will
likely grow as well. However, while recent research has highlighted
the prevalence of conversational programmers [4, 5, 24], we still
have a limited understanding of how to effectively support these
learners in reaching their particular goals in the relatively short
time they can dedicate to computing education. A key challenge is
that researchers have not yet defined the type of knowledge that
conversational programmers need, and how this differs from the
knowledge that aspiring code writers will need.

In this paper, we address this gap by analyzing existing empiri-
cal work on conversational programmers to extract a set of nine
distinct learning goals. We find that conversational programmers’
goals often reference specific tasks they want to complete, which
frequently involve making connections between code’s real-world
purpose and the internal elements of software. To further define the
knowledge that conversational programmers need, and compare
this to the knowledge of traditional software developers, we apply
the Structure Behavior Function framework to organize their goals.
We find that conversational programmers need a more shallow

https://doi.org/10.1145/3478431.3499370
https://doi.org/10.1145/3478431.3499370
https://doi.org/10.1145/3478431.3499370

understanding of code that focuses primarily how structures and
behaviors contribute to its function. Based on these findings, we
argue that instructors should acknowledge that there are multiple
valid ways of understanding programs that serve different goals,
and that curricula for conversational programmers should focus on
the roles of abstract, high-level components of authentic programs.

2 WHO ARE CONVERSATIONAL
PROGRAMMERS?

Chilana et al. coined the term “conversational programmer” after
exploring the goals of Engineering Management students related
to programming [4]. These students cited a desire to improve com-
munication with professional programmers and improve job mar-
ketability as motivations for learning to code, despite not aspiring
to write much code in the careers. Later papers have profiled con-
versational programmers at large software companies [5], among
professional adults [24], and in non-computer science majors [1, 7].
Common job titles of conversational programmers include manager,
designer, entrepreneur, and marketer [24].

This research found that the defining trait of conversational
programmers is an aim to understand and contribute to technical
conversations [4, 5, 24]. Managers, for instance, mentioned want-
ing to better understand the feasibility, limitations, and trade-offs
of different technologies [5, 24]. Designers brought up being able
to more precisely communicate designs to developers [5, 7, 23].
As students, conversational programmers are distinct from other
non-major groups. On the spectrum of code proficiency, conversa-
tional programmers slot in between non-programmers and end-user
programmers [4] (see Figure 1). In contrast to some populations
of non-majors, who may not see the applicability or relevance of
programming to their future careers, conversational programmers
actively seek programming information because they believe it will
be beneficial [24].

While prior research on conversational programmers has high-
lighted their prevalence and provided valuable insights into their
goals and professional roles, these studies did not formally define
their learning goals to support instruction. In the field of education,
learning goals often encompass information about the knowledge
and skills learners need to master and the tasks learners want to be
able to complete [15]. By formalizing this information, educators
can design instruction that is tailored to the specific learning goals
of their students. In this work, we aim to build on prior research on
conversational programmers by analyzing findings to define formal
learning goals for this population.

Figure 1: Types of programmers and their defining tasks
(adapted from [4]).

3 WHAT DO CONVERSATIONAL
PROGRAMMERS WANT TO KNOW?

To identify what conversational programmers want to know and do,
we first reviewed empirical research on this population. After identi-
fying relevant studies of professional conversational programmers,
non-major students, and adult learners, we analyzed their findings
to distill a set of nine distinct learning goals. This approach allowed
us to identify recurring themes across these diverse perspectives
on conversational programmers.

3.1 Method
3.1.1 Gathering relevant literature. To identify literature about
conversational programmers, we performed a two-pronged search.
First, we conducted a search of the ACMDigital Library, IEEExplore,
and Google Scholar for the term “conversational programmer.” Sec-
ond, we used Google Scholar to identify publications that cited any
of the three most highly cited articles from the first search: Chilana
et al. 2015 [4], Chilana et al. 2016 [5], and Wang et al. 2017 [24].
We reviewed these 78 articles, and retained those that identified
goals of conversational programmers through survey or interview
studies. The six articles that met our criteria are listed in Table 1.

3.1.2 Extracting learning goals. Our process for extracting conver-
sational programming learning goals was adapted from the proce-
dure Rich et al. used to identify computational thinking learning
goals for K-8 students [17]. Borrowing their definition, we specify
a learning goal as any explicit statement or implicit endorsement
of what a conversational programmer can or should be able to do
in relation to computer science. Learning goals were drawn from
participant quotes, survey responses, and summaries provided by
article authors. Two researchers individually reviewed each article
to identify potential learning goals, and then met to collaboratively
decide on final goals. This process produced 98 learning goals.

Two papers had an outsized impact on the learning goal pool:
analysis of Chilana et al. 2016 [5] produced 42 learning goals and
analysis of Wang et al. 2017 [24] produced 21 learning goals.

3.1.3 Organizing learning goals into clusters. The first three au-
thors collaboratively grouped learning goals to identify clusters.
Learning goals were first grouped by shared topics and keywords
(e.g., “bugs”, “marketable”). Then, grouping continued based on the
actions learning goals required (e.g., “describe”, “predict”, “measure”,
“build”). Our analysis resulted in nine clusters, shown in Figure 2.

Table 1: Publications that have interviewed or surveyed con-
versational programmers about desirable outcomes.

Article Population of conversational programmers

Abdunabi et al.[1] Non-major students
Chilana et al. [4] Non-major students
Chilana et al. [5] Professional conversational programmers
Cunningham et al. [7] Non-major students
Tanner et al. [23] Professional conversational programmers
Wang et al. [24] Adult learners

Figure 2: Conversational programmer learning goals, as expressed by current and aspiring conversational programmers.

3.2 Cognitive learning goals
The first seven clusters involve cognitive processes like recalling,
summarizing, inferring, and creating.

3.2.1 Recognize computational and workplace processes. Conversa-
tional programmers value general familiarity with how coding is
done and what components make up programs. Conversational pro-
grammers want to understand the procedures their colleagues use
when they work on technical tasks, both individually (e.g. making
code changes [5]), and as a team. Code’s internal function is also of
concern to conversational programmers. They want to understand
both the programming-related terminology others use, and which
parts of code are relevant to current conversation. Conversational
programmers also seek a better understanding of “what customers
go through” when implementing a technical system [5].

3.2.2 Describe code functionality. Simply understanding code isn’t
sufficient for conversational programmers—they also need to be
able to communicate and explain code at multiple levels. At one
level are big-picture conversations about “products and platforms
with external customers” [5]. On another level are technical con-
versations with developers. Connecting “customer priorities to the
technical processes” is a task that calls for translation between these
two levels [4].

3.2.3 Predict what is possible to achieve with code. Conversational
programmers want to understand the benefits and limitations of
various technologies. Managers, for instance, regard understanding
benefits and costs of technologies as particularly important [24].
Knowing “what the coders can and can’t do” is crucial in coordinat-
ing realistic deadlines with developers [7], and also in empathizing
and adapting when development roadblocks occur [5].

3.2.4 Measure code’s ability to meet goals. After a plan or design is
implemented, conversational programmers often need to compare
actual and designed functionality to assess product standards [23].
When code fails to meet expectations, they hope to be able to
communicate discrepancies accuratelywith developers through bug
reports [5] and conversations [23].

3.2.5 Articulate goals to be achieved with code. As one might ex-
pect from designers, entrepreneurs, and managers, conversational
programmers want to be able to articulate ideas and goals in lan-
guage that developers can understand. Often, a simple mock-up
(i.e. an interactive prototype using HTML, CSS, and JavaScript)
[5, 23] helps conversational programmers have more “concrete
discussions”, especially around implementation details [5].

3.2.6 Find relevant technical information. Conversational program-
mers do not have to be technical experts, but they value the ability
to fill personal gaps in knowledge. This involves asking productive
questions so engineers can clarify technical concepts in layman’s
terms [5], and identifying appropriate external resources [5, 24].

3.2.7 Build and modify with code. Occasionally, conversational
programmers edit or create programs. UX designers, for instance,
often find themselves makingminor CSS fixes [23]. Although 71% of
conversational programmers at a large software company said they
never wrote code [5], some still performed end-user programming
tasks such as data analysis or prototype creation [5].

3.3 Non-cognitive learning goals
The remaining two clusters involved goals conversational program-
mers found valuable interpersonally and in career development.

3.3.1 Establish strong working relationships with developers. Un-
derstanding code and coding is more than technical ability—it also
supports soft skills that promote relationships. Conversational pro-
grammers expressed a desire to build rapport between themselves
and developers. One way to do this is to express empathy for pro-
grammers’ challenges, even with jokes (i.e. regarding coding strug-
gles like misplaced commas) [24]. Conversational programmers
also believe that demonstrating knowledge about the process of
programming and digital trends could elicit greater “respect” from,
and “credibility” with, technical team members [24].

3.3.2 Have skills valuable to the job market. Conversational pro-
grammers connected their skill development to professional oppor-
tunities. The technical skills they mentioned included programming
languages as well as familiarity with the most recent technology.
Skills considered more valuable were those that were currently in
use in industry. For example, undergraduate conversational pro-
grammers preferred learning Java over Processing, because they
considered Java more likely to be used in the workplace [4].

4 UNDERSTANDING CONVERSATIONAL
PROGRAMMER KNOWLEDGE

The nine learning goals we identified through our literature analysis
highlight that conversational programmers want to engage with
code in different ways than traditional software developers. Their
goals often involve making connections between code’s real-world
purpose and the internal and structural elements of software, and
communicating this understanding in conversation with others.
We also found that the learning goals primarily described tasks
that conversational programmers want to complete, rather than
the types of programming knowledge they want to attain.

In order to better define this knowledge, and help us distinguish it
from the knowledge that software developers or other code writers
require, we organize it using the Structure Behavior Function (SBF)
framework [11]. The SBF framework is a general framework for
knowledge of designed artifacts, used in cognitive science [8], the
learning sciences [13], and design science [10].

While knowledge frameworks do exist to describe program com-
prehension, they typically focus on understanding of low-level
details rather than knowledge about code’s real-world purpose
that is central to conversational programmers’ goals. For example,
the notional machine [21] describes code’s execution line-by line,
and the Block Model [18] describes knowledge used to work from
individual tokens up to entire program understanding. The SBF
framework is ideal for our context because it (a) spotlights function,
which appears frequently in conversational programmers’ learning
goals; (b) is general enough to incorporate a variety of types of
knowledge; and (c) is flexible enough to build on existing work in
computing education.

4.1 Defining Structure, Behavior, and Function
In this section, we present the components of the SBF framework
and show how it can be applied to program understanding.

(a) Conversational programmer knowledge primarily involves under-
standing how high-level structures and behavior are directly con-
nected to the overall purpose of a piece of code.

(b) Developer knowledge also involves understanding connections to
overall purpose, but requires low-level understanding of the program-
ming language elements used to write code as well.

Figure 3: The difference in knowledge needed for conversational programming and software development tasks.

4.1.1 Three types of knowledge. SBF categorizes knowledge about
an artifact in three distinct but interacting types:

Structure is the parts of the artifact and their arrangement. It is
what the artifact contains, or is made of.

Function is the purpose of the artifact. It is the reason the artifact
was created and why it does what it does.

Behavior is the mechanism by which the artifact works. It is
how structures achieve their purpose. Often, many behaviors occur
to reach a single functional goal.

4.1.2 Knowledge is hierarchical and layered. Cognitive scientists
who have applied the SBF framework noted that the functions of
an artifact might be considered behaviors when that artifact is a
component of a larger artifact [12]. In other words, the functions of
sub-components are behaviors of the entire artifact. This layering
of components means that there are higher-level structures and
behaviors that are directly related to an artifact’s overall function,
and lower-level structures and behaviors that are more distantly
related the artifact’s overall function.

4.1.3 SBF in code. Structure: What is code made of? Certainly
syntax elements like loops and variables, but there are many more
meaningful structures in code. Studies of program comprehension
tell us that common code patterns are also units programmers recog-
nize in code [20]. Programs may also contain functions, objects and
even larger structures like parts of a design pattern. Programs may
be related to other structures like configuration files and databases.

Function:Why is code written? Of course, there is the ultimate
reason: the goal or purpose of the entire program. Schulte identified
this and three additional types of functions in the Block Model [18],
including how sub-goals relate to the program’s overall goal and
how individual statements contribute to sub-goals.

Behavior: How does code work? The operation of the notional
machine is a behavior of syntax statements [21]. The goals asso-
ciated with programming plans are another type of behavior [19].
As a program grows larger its behavior might include the roles of
various sub-elements, such as how a database supports quick access
for customer data.

Layers: Programs have many levels of abstraction, and certainly
fit the hierarchical model SBF suggests. The structures and behav-
iors we describe above range from lower-level (e.g. syntax structures
and semantics) to higher-level (e.g. pieces of a software system, like
a web engine and its roles). Three layers of abstraction are shown
in Figure 3b.

4.2 Applying SBF to conversational
programmer learning goals

In this section, we describe insights from the conversational pro-
grammer learning goals in the language of the SBF framework.

4.2.1 Code’s highest-level function is the keystone of conversational
programmer knowledge. A striking number of conversational pro-
grammer tasks reference code’s overall purpose. This purpose is
described in words (“Explain what code achieves for customers”),
given as directions (“Specify goals for creation to programmers”),
and evaluated (“Measure code’s ability to meet goals”). Additional
tasks involve relating a technical concept to a purpose, such as
when conversational programmers reflect on possibilities (“Feasi-
bility of an idea”) and help technical and non-technical audiences
communicate (“Translate descriptions from one level to another”).
Even when performing a code writing task like building a prototype,
the desired outcome is to communicate potential functionality [5].

4.2.2 Higher-level structures and behaviors best support conversa-
tional programmer goals. When conversational programmers de-
scribe what they need to know, they often use terms like “general”,
“conceptual”, and “big-picture”. What do those terms mean?

The SBF framework gives us some clue. High-level structures and
behaviorsmost directly explain a program’s overall function (shown
by their connections in Figure 3). Therefore, knowledge about them
best supports the numerous conversational programmer learning
goals that focus on function. Conversational programmers’ quotes
about their learning goals often reference high-level structures and
behaviors. Wanting to know “how the engine is architected” [5]
suggests knowledge of high-level structures and having “a general
idea of what it’s doing” [7] suggests high-level behavior knowledge.

4.2.3 Conversational knowledge and writing knowledge differ in
SBF depth. Our analysis suggests that the knowledge most valuable
to conversational programmers lies in high-level structures and
behaviors, since they connect most directly to code’s function. In
practice, conversational programmers are focused on understanding
a particular system or technology and the goals it can achieve. They
need knowledge that supports making connections “top-down”
from code’s function to its behaviors and functions, which is at the
higher levels of abstraction (see Figure 3a).

By contrast, software developers are expected to be able to create
programs in a variety of languages, towards a variety of goals. This
need for widely-applicable programming knowledge explains why
introductory courses focus on lower-level structures and behaviors,
such as the syntax and semantics of a programming language [2],
and build “bottom-up” from there. This focus is understandable
because people who write code professionally need knowledge that
spans from lower-level to higher-level on the SBF hierarchy to write
and debug code effectively (see Figure 3b).

5 HOW TO DESIGN CONVERSATIONAL
PROGRAMMER INSTRUCTION

We claim that conversational programmers find knowledge of high-
level structures and behaviors most valuable. However, existing
instruction does not emphasize this knowledge early on. We de-
scribe three goals to guide conversational programmer education.

5.1 We need to define high-level code
structures and behaviors

To effectively teach the high-level knowledge that conversational
programmers want, we need to better define the high-level struc-
tures and behaviors conversational programmers should be familiar
with. Conversational programmers value an understanding of tech-
nologies used in practice, so it is particularly important to under-
stand the high-level structures and behaviors of authentic programs
or even whole software systems.

There has been a great deal of focus on categorizing and de-
scribing low-level code behavior, evidenced by the great number
of program visualization tools created by computing education
researchers to illustrate notional machine operation [22] or expres-
sion evaluation [14]. However, there is less focus on describing the
functionality of common sub-structures of software systems in a
way that is accessible to novices.

The best approach to identify the relevant high-level structures
and behaviors may be empirical. From technical conversations
between conversational programmers and others, we can identify
mentioned structures and behaviors. We can also select programs
and software systems that meet conversational programmers’ goals
of authenticity, and name their high-level structures and behaviors.

5.2 Scaffolding should allow understanding of
high-level code structures and behaviors,
without requiring low-level understanding

Typical programming instruction starts with the syntax of a pro-
gramming language and teaches students to build larger and larger

programs over time. This bottom-up approach values depth of un-
derstanding for every program that students work with. However,
conversational programmers have neither the time nor the interest
for this approach [24]. They want and need to understand authentic
systems, but in a high-level way that clearly connects to function.

For conversational programmers, we propose a more top-down
approach: learners should be able to work with higher-level struc-
tures and behaviors without needing to “build up” understanding
by scrutinizing lower-level behaviors. To make this possible, scaf-
folding is required. A few existing instructional strategies support
this outcome, including those that center higher-order functions
[9] or programming plans [7]. These approaches provide additional
information about the behavior of the functions or plans, so learn-
ers don’t have to infer it. Case studies of authentic systems that
highlight high-level structures and behaviors could also be valuable.

5.3 Low-level knowledge should be taught for
empathy rather than mastery

Is low-level programming knowledge irrelevant? We argue that
for conversational programmers, low-level structure and behavior
knowledge is most useful in the service of understanding the expe-
riences of developers. By understanding the process they undergo
to write code, and common challenges during that process, conver-
sational programmers can meet their goals of building empathy for
technical co-workers as well as developing credibility.

What does it mean to learn for empathy rather thanmastery? The
outcomes shouldmatch conversational programmers learning goals:
to understand “what the process is like to accomplish certain things”
[7] and “how the developer [would code] a feature” [5], without
the need to code oneself. To increase authenticity to the work
of programmers, relevant activities might include more complex
components, such as more program files and configuration.

It is interesting to note that highly-scaffolded approaches to code
writing that are common for teaching programming to non-majors
(by definition) avoid some of the authentic challenges developers
face when using industry-level tools, such as syntax issues and im-
port issues.We do not advocate that conversational programmers be
thrown in the deep end of code creation, particularly because they
have low self-efficacy for programming [4]. However the support
we provide should not occlude valuable learning experiences.

6 CONCLUSION
As a result of our analysis of conversational programmer learning
goals and application of the SBF framework, we propose an instruc-
tional approach that flips the focus of programming learning. By
prioritizing the high-level function, behavior, and structure of au-
thentic programs, we can teach the knowledge that conversational
programmers want and need.

The example of conversational programmers shows that com-
puting learners with different career endpoints may want different
types of knowledge about programs. By teaching everyone with
approaches that forefront low-level knowledge, we run the risk of
demotivating those who have different goals and value different
coding knowledge [6, 24]. For all learners, we should understand
the type of program knowledge they value and design to make it
accessible early on with new instructional strategies.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant # 2030859 to the Computing Research
Association for the CIFellows Project. We thank Mark Guzdial and
Barbara Ericson for their formative discussions on this work. We
thank the Delta Lab community for their valuable feedback.

REFERENCES
[1] Ramadan Abdunabi, Ilham Hbaci, and Heng-Yu Ku. 2019. Towards Enhancing

Programming Self-Efficacy Perceptions among Undergraduate Information Sys-
tems Students. Journal of Information Technology Education: Research 18 (April
2019), 185–206. https://doi.org/10.28945/4308

[2] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal About
Our Expectations of Introductory Programming Students?. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 1011–1017. https://doi.org/10.1145/3287324.3287485

[3] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall,
Susanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation
CS: The Growth of Computer Science. ACM Inroads 8, 2 (May 2017), 44–50.
https://doi.org/10.1145/3084362

[4] Parmit K. Chilana, Celena Alcock, Shruti Dembla, Anson Ho, Ada Hurst, Brett
Armstrong, and Philip J. Guo. 2015. Perceptions of non-CS majors in intro pro-
gramming: The rise of the conversational programmer. In 2015 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Atlanta,
GA, 251–259. https://doi.org/10.1109/VLHCC.2015.7357224

[5] Parmit K. Chilana, Rishabh Singh, and Philip J. Guo. 2016. Understanding
Conversational Programmers: A Perspective from the Software Industry. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Sys-
tems. Association for Computing Machinery, New York, NY, USA, 1462–1472.
https://doi.org/10.1145/2858036.2858323

[6] Kathryn Cunningham, Rahul Agrawal Bejarano, Mark Guzdial, and Barbara
Ericson. 2020. “I’m Not a Computer”: How Identity Informs Value and Expectancy
During a ProgrammingActivity. In Proceedings of the 14th International Conference
of the Learning Sciences. International Society of the Learning Sciences (ISLS),
705–708.

[7] Kathryn Cunningham, Barbara J. Ericson, Rahul Agrawal Bejarano, and Mark
Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conversational Programming
by Starting from Code’s Purpose. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, 1–15. https://doi.org/10.1145/3411764.3445571

[8] Johan De Kleer. 1984. How circuits work. Artificial intelligence 24, 1-3 (1984),
205–280.

[9] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Moderniz-
ing Plan-Composition Studies. In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (Memphis, Tennessee, USA) (SIGCSE
’16). Association for Computing Machinery, New York, NY, USA, 211–216.
https://doi.org/10.1145/2839509.2844556

[10] John S. Gero. 1990. Design prototypes: a knowledge representation schema for
design. AI magazine 11, 4 (1990), 26–26.

[11] Ashok K. Goel, Andrés Gómez de Silva Garza, Nathalie Grué, J. William Mur-
dock, Margaret M. Recker, and T. Govindaraj. 1996. Towards design learn-
ing environments — I: Exploring how devices work. , 493–501 pages. https:
//doi.org/10.1007/3-540-61327-7_148

[12] Ashok K. Goel, Spencer Rugaber, and Swaroop Vattam. 2009. Structure, behavior,
and function of complex systems: The structure, behavior, and function modeling
language. Artificial intelligence for engineering design, analysis and manufacturing:
AI EDAM 23, 1 (2009), 23–35.

[13] Cindy Hmelo-Silver. 2004. Comparing expert and novice understanding of a
complex system from the perspective of structures, behaviors, and functions. ,
127–138 pages. https://doi.org/10.1016/s0364-0213(03)00065-x

[14] Amruth N. Kumar. 2015. The Effectiveness of Visualization for Learning Ex-
pression Evaluation. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). As-
sociation for Computing Machinery, New York, NY, USA, 362–367. https:
//doi.org/10.1145/2676723.2677301

[15] Patricia Marsh. 2007. What is Known about Student Learning Outcomes and
How does it relate to the Scholarship of Teaching and Learning? International
Journal for the Scholarship of Teaching and Learning 1, 2 (July 2007). https:
//doi.org/10.20429/ijsotl.2007.010222

[16] U.S. Bureau of Labor Statistics. 2021. Software developers, quality assurance
analysts, and testers : Occupational outlook handbook. U.S. Bureau of Labor
Statistics. https://www.bls.gov/ooh/computer-and-information-technology/
software-developers.htm

[17] Kathryn Rich, Carla Strickland, and Diana Franklin. 2017. A Literature Review
through the Lens of Computer Science Learning Goals Theorized and Explored
in Research. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 495–500. https://doi.org/10.
1145/3017680.3017772

[18] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension as a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,
Australia) (ICER ’08). Association for Computing Machinery, New York, NY, USA,
149–160. https://doi.org/10.1145/1404520.1404535

[19] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858. https://doi.org/10.
1145/6592.6594

[20] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-
edge. IEEE Transactions on Software Engineering SE-10, 5 (Sept. 1984), 595–609.

[21] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
ACM Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 31 pages. https://doi.org/
10.1145/2483710.2483713

[22] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM Transac-
tions on Computing Education 13, 4 (2013), 15.1– 15.64. https://doi.org/10.1145/
2490822

[23] Kesler Tanner, Naomi Johnson, and James A. Landay. 2019. Poirot: A Web
Inspector for Designers. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 1–12. https://doi.org/10.1145/3290605.3300758

[24] April Y.Wang, RyanMitts, Philip J. Guo, and Parmit K. Chilana. 2018. Mismatch of
Expectations: HowModern Learning Resources Fail Conversational Programmers.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1–13. https://doi.org/10.1145/3173574.3174085

https://doi.org/10.28945/4308
https://doi.org/10.1145/3287324.3287485
https://doi.org/10.1145/3084362
https://doi.org/10.1109/VLHCC.2015.7357224
https://doi.org/10.1145/2858036.2858323
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/2839509.2844556
https://doi.org/10.1007/3-540-61327-7_148
https://doi.org/10.1007/3-540-61327-7_148
https://doi.org/10.1016/s0364-0213(03)00065-x
https://doi.org/10.1145/2676723.2677301
https://doi.org/10.1145/2676723.2677301
https://doi.org/10.20429/ijsotl.2007.010222
https://doi.org/10.20429/ijsotl.2007.010222
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://doi.org/10.1145/3017680.3017772
https://doi.org/10.1145/3017680.3017772
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/3290605.3300758
https://doi.org/10.1145/3173574.3174085

	Abstract
	1 Introduction
	2 Who are conversational programmers?
	3 What do conversational programmers want to know?
	3.1 Method
	3.2 Cognitive learning goals
	3.3 Non-cognitive learning goals

	4 Understanding conversational programmer knowledge
	4.1 Defining Structure, Behavior, and Function
	4.2 Applying SBF to conversational programmer learning goals

	5 How to design conversational programmer instruction
	5.1 We need to define high-level code structures and behaviors
	5.2 Scaffolding should allow understanding of high-level code structures and behaviors, without requiring low-level understanding
	5.3 Low-level knowledge should be taught for empathy rather than mastery

	6 Conclusion
	Acknowledgments
	References

