
A Framework for Automatically Generating
Interactive Instructional Scaffolding

Eleanor O’Rourke1, Erik Andersen2, Sumit Gulwani3, Zoran Popović1

1Center for Game Science, Computer Science & Engineering, University of Washington
2Department of Computer Science, Cornell University 3Microsoft Research Redmond
{eorourke, zoran}@cs.washington.edu, eland@cs.cornell.edu, sumitg@microsoft.com

ABSTRACT
Interactive learning environments such as intelligent tutoring
systems and software tutorials often teach procedures with
step-by-step demonstrations. This instructional scaffolding is
typically authored by hand, and little can be reused across
problem domains. In this work, we present a framework for
generating interactive tutorials from an algorithmic represen-
tation of the problem-solving thought process. Given a set
of mappings between programming language constructs and
user interface elements, we step through this algorithm line-
by-line to trigger visual explanations of each step. This ap-
proach allows us to automatically generate tutorials for any
example problem that can be solved with this algorithm. We
describe two prototype implementations in the domains of K-
12 mathematics and educational games, and present results
from two user studies showing that educational technologists
can author thought-process procedures and that generated tu-
torials can effectively teach a new procedure to students.

Author Keywords
Computational education; scaffolding; authoring tools.

ACM Classification Keywords
H.5.0. Information Interfaces and Presentation: General

INTRODUCTION
Procedural knowledge is required for a wide range of human
activities, from cooking to mathematics to using software ap-
plications. Many of the concepts taught in interactive learning
environments like cognitive tutors, educational games, and
software tutorials are procedural in nature. Some procedures,
such as opening a file in a text editor, are simple. Others, such
as long division, involve complex control flow structures like
loops and conditionals. Teaching complex procedures in in-
teractive learning environments presents many challenges.

One effective method of teaching procedures is by provid-
ing scaffolding that helps students solve problems that would
otherwise be beyond their reach [11, 27]. While there are
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Request permissions from Permissions@acm.org.

CHI 2015, April 18 - 23, 2015, Seoul, Republic of Korea
Copyright 2015 ACM 978-1-4503-3145-6/15/04$15.00
http://dx.doi.org/10.1145/2702123.2702580

many different approaches to scaffolding learning, interactive
learning environments typically use step-by-step demonstra-
tions, tailored progressions of practice problems, and individ-
ual feedback to support students. Intelligent tutoring systems
provide student with adaptive sequences of problems and per-
sonalized hints [4, 10, 26], and software tutorials often use
step-by-step demonstrations to teach procedural tasks [6, 14].

While interactive scaffolding is effective, this type of content
is often time-consuming to create because it must be authored
by hand [1, 12]. As a result, many researchers have explored
methods of generating interactive explanations automatically
[2, 6, 7, 9, 12, 13]. While these approaches have significantly
reduced the amount of effort required to author scaffolding,
they often apply to only one application domain or require the
designer to write separate content for each example problem.
In some domains, such as K-12 mathematics, we may want
to demonstrate a procedure for a large number of practice
problems and produce multiple different types of scaffolding.
Ideally, we would like an application-independent method of
explaining a given procedure for any example problem.

In this paper, we introduce a new framework for automati-
cally generating interactive tutorials to teach the entire space
of problems that can be solved with a given procedure. In our
framework, an educational technologist encodes the problem-
solving thought process as an algorithm and provides a map-
ping between programming language constructs and visual
objects in the user interface. By stepping through this algo-
rithm line-by-line, we automatically generate visual explana-
tions for each step. This approach has a number of advan-
tages. Given a set of mappings and an encoded algorithm, our
framework automatically produces tutorials for any example
problem in the domain. Furthermore, our framework natu-
rally supports the creation of many different types of interac-
tive scaffolding, including problem progressions, just-in-time
feedback, and fading worked-out examples.

We demonstrate the generality of our approach by show-
ing how it applies to two distinct problem-solving domains:
a K-12 mathematics application and an educational game.
Through a user study with fifth-grade students, we show that
our generated tutorials can produce learning gains similar to
those of a human teacher. We also show that that educational
technologists can encode an algorithm to explain subtraction
in just a few hours. We believe this approach can greatly
improve the process of authoring interactive scaffolding, par-
ticularly in domains with large numbers of practice problems.

1

RELATED WORK
Researchers have explored many methods of designing and
authoring interactive instructional materials to teach procedu-
ral knowledge through computer applications. In this section,
we provide an overview of existing work in two domains: in-
telligent tutoring systems and software tutorials.

Intelligent Tutoring Systems
Intelligent tutoring systems (ITS) are applications that emu-
late one-on-one tutoring with a human teacher [4, 10, 26].
These systems teach procedural concepts using personalized
progressions of practice problems and contextual feedback
[26], and they have been shown to produce learning gains in
classroom studies [15]. While ITSs have great potential, they
have not been widely adopted because they are expensive to
build [10]. It has been estimated that 200-300 hours of expert
design is needed to produce one hour of ITS content [1].

Researchers have explored many methods of reducing tutor
authoring effort. Brawner et al. provide design recommen-
dations for authoring tools, highlighting the importance of
domain-independent methods [8]. Sottilare describes efforts
to develop a Generalized Intelligent Framework for Tutors
based around a standard ontology for representing knowledge
[24]. Stamper et al. developed the Hint Factory to make it eas-
ier to add ITS-style interaction to existing educational soft-
ware by using Markov decision processes to automatically
generate contextual hints from past student data [25].

Others have focused on reducing the expertise required to au-
thor content for an intelligent tutoring system. Blessing et
al. developed a cognitive model SDK that allows authors to
edit rule hierarchies through a user interface to reduce the
need for programming expertise [7]. Aleven et al. developed
the Cognitive Tutor Authoring Tools (CTAT) to allow design-
ers to create example-tracing tutors without programming [2].
With CTAT, designers demonstrate correct and incorrect pro-
cedures for an example problem to create a “behavior graph”
that can be generalized to tutor multiple isomorphic prob-
lems. CTAT has been shown to reduce development costs by
a factor of 4 to 8 [2]. Olsen et al. extended CTAT to support
the authoring of collaborative ITSs built around collaborative
scripts [18]. We take a different approach to improving the
scaffolding authoring process. Rather than designing tools
to reduce the expertise required to author tutors, we aim to
maximize the content that programmers can create.

Software Tutorials
Since many tasks in software applications involve following
procedures, there is a body of research in software usabil-
ity that explores methods of teaching procedural knowledge.
This work has shown that step-by-step tutorials are effective
instructional tools, especially when they provide interactive
elements such as stencils [14], videos that track the user’s
progress [20], and interface highlighting [6].

While step-by-step tutorials are effective, authoring this con-
tent can be time-consuming [6, 12, 21]. To address this issue,
some researchers have focused on improving the quality of
video tutorials, since these are comparatively low-cost to cre-
ate. Pongnumkul et al. developed Pause-and-Play, a system

that links events in a video to user events in the target ap-
plication, pausing the tutorial when the user lags behind [20].
Others have focused on adapting existing tutorials for new do-
mains. Ramesh et al. developed ShowMeHow, a system that
automatically transfers step-by-step tutorials between similar
applications such as Photoshop and GIMP [21].

Researchers have also explored methods for generating tuto-
rials automatically [9, 12]. One approach is to generate tuto-
rials directly from user demonstrations of a procedural task.
Grabler et al. developed a system for automatically generat-
ing text and image tutorials from demonstrations in an instru-
mented version of GIMP [12]. Chi et al. developed MixT,
which automatically generates mixed media tutorials with
both text and video from user demonstrations in Photoshop
[9]. While these systems produce tutorials automatically, they
only work for specific domains like image manipulation, and
the tutorials cannot always be applied to new problems. Fur-
thermore, these systems only support linear procedures. In
contrast, our framework supports complex non-linear proce-
dures, applies to multiple domains, and can generate tutorials
for any example problem that can be solved by the procedure.

Another approach is to generate tutorials that show users how
to recreate an artifact in a user application. For example,
Harms et al. augment a programming environment to auto-
matically generate stencil-based instructions from code snip-
pets [13], and Li et al. automatically generate tutorials to
recreate AutoCAD drawings [16]. These systems can auto-
matically produce tutorials for multiple example problems,
but provide little control over how the tutorial teaches the
procedure. In educational domains, it is important to teach
students by describing the problem-solving thought process.

The work that relates most closely to ours is the DocWiz-
ards system by Bergman et al., which learns a procedure from
multiple user demonstrations [6]. The DocWizards interface
exposes a human-readable version of the learned procedure
so a new user can step through it line-by-line. At each step,
the current line is highlighted and the widget involved in the
next action is circled in the user interface. While the DocWiz-
ards system uses an algorithmic representation of a procedure
to automatically generate tutorials, it was not designed to ex-
plain the thought process. The learner is expected to read and
understand if − else statements, which significantly reduces
the usability of this system. Furthermore, the procedure must
be demonstrated on many distinct problems to create an ac-
curate underlying algorithm, and the complexity of the pro-
cedures that can be represented is limited.

FRAMEWORK DESIGN
We present a new framework for generating step-by-step tuto-
rials to teach procedural knowledge. In our framework, an ed-
ucational technologist encodes the problem-solving thought
process as an algorithm. Using a domain-independent inter-
preter, we step through this algorithm line-by-line. We ex-
plain each line using a set of mappings between program-
ming language constructs and visual objects in the user inter-
face, provided by the educational technologist. This approach
allows us to automatically explain any problem that can be
solved with the procedure. Figure 1 shows this workflow.

2

Algorithm 1 Given as input a 2D array table containing a
minuend p, represented as a set of digits p0, p1, ..., pm located
in cells (0,0) to (0, m), and a subtrahend q, represented as a
set of digits q0, q1, ..., qn in cells (1,m−n) to (1,m), subtract:
1: procedure SUBTRACT(table)
2: for each column in table.GetColsFromRight() do
3: top := column.GetCell(0)
4: bottom := column.GetCell(1)
5: if bottom.NotEmpty() then
6: if top.value < bottom.value then
7: borrow := table.LeftOf(top)
8: while borrow.value == 0 do
9: borrow := table.LeftOf(borrow)
10: end while
11: borrow.value := borrow.value − 1
12: while borrow.NotNextTo(top) do
13: borrow := table.RightOf(borrow)
14: borrow.value := 9
15: end while
16: top.value := top.value + 10
17: end if
18: result := column.GetCell(2)
19: result.value := top.value − bottom.value
20: else
21: result := column.GetCell(2)
22: result.value := top.value
23: end if
24: end for
25: end procedure

Thought Process Language
To complete a procedural task, a student must follow a cer-
tain thought process to decide when to perform each action.
A simple procedure may be a list of actions to be executed in
order, while a complex procedure will require the student to
choose which steps to execute based on features of the cur-
rent problem. To solve a subtraction problem, for example,
the student needs to decide whether or not to borrow by com-
paring the top and bottom digits in a column.

We encode this problem-solving thought process in a lan-
guage we call the Thought Process Language (TPL). The TPL
algorithm for subtraction is given in Algorithm 1. This algo-
rithm solves all single-digit and multi-digit subtraction prob-
lems. TPL constructs are standard to many programming lan-
guages, and are not a contribution of this paper. TPL includes
basic primitives like variables and constants, as well as ex-
pressions that can include integer operators (+, −, ∗, /) or
Boolean operators (<, >, ==, ! =). TPL has three types of
statements: assignments, conditionals, and loops (for, while,
do-while, for-each). TPL is based on object-oriented pro-
gramming languages and also supports objects, object fields,
and object methods. Additionally, TPL includes functions
and a procedure can reference multiple sub-procedures.

Compiler and Interpreter
We generate explanations for a given problem by stepping
through the TPL algorithm line-by-line like a debugger. To
accomplish this, we use a compiler and an interpreter that
are designed to be reused across applications. The TPL algo-
rithm is compiled and passed into the interpreter, which main-
tains information about the set of variables that are currently
stored in memory. As the interpreter executes each line, it
broadcasts events about this state, such as when new variables
are put into context, when statements are executed, and when

Figure 1. The framework workflow. A domain-specific TPL algorithm
representing the problem-solving thought process is given as input, com-
piled, and then passed to the interpreter. The interpreter steps through
the algorithm line-by-line and throws events, which are passed to the
domain-specific interface hooks, which generate visual explanations.

Event Interface Hook
Put variable in context Interface Highlighting

Remove variable from context Interface Highlighting
Execute assignment statement Textual Explanation
Execute conditional statement Textual Explanation

Execute loop statement Textual Explanation
Execute return statement Textual Explanation

Table 1. The type of interface hook used to explain each type of event.

sub-procedures return. A full list of the events thrown by the
interpreter is given in Table 1. Each event contains relevant
information like the name of the variable, the programming
language object associated with the executed statement, or
the name of the sub-procedure that was called. These events
are passed to domain-specific interface hook functions, which
generate and display visual explanations.

Interface Hooks
To explain the events that are broadcast by the interpreter,
we use domain-specific functions called interface hooks that
map events to visual explanations in the user interface. We
use two types of visual explanations: textual descriptions and
interface highlighting. The explanation used for each type
of interpreter event is shown in Table 1. Authoring interface
hook functions involves writing code that is similar to what
a developer would write to create problem-specific tutorials
for an application, but our framework allows this code to be
re-used to explain any problem in the given domain.

Textual Explanations
Textual explanations are commonly used to teach procedural
tasks in both software tutorials and intelligent tutoring sys-
tems [9, 26]. We use text to describe assignment statements,
return statements, loops, and conditionals. To display a tex-
tual explanation in our framework, we first automatically gen-
erate the explanation and then display it in the user interface.

We generate explanation text in a completely application-
independent manner using information that is encoded within
the TPL algorithm itself. We use templates to convert lines
of TPL code into textual explanations. A template is a single-
sentence string that describes a certain type of statement, for
example a conditional statement. To generate the explanation
for a line of code, we fill the appropriate template with the

3

(a) (b) (c)

Figure 2. Examples of the explanations generated for the subtraction procedure. Figure (a) shows the explanation of the assignment of a variable called
top to the top cell in a column. Figure (b) shows the explanation of the assignment of a variable called bottom to the bottom cell. Since the variable top
is still in scope it remains highlighted. Figure (c) shows the explanation of the condition statement that determines whether borrowing is needed.

names of the variables, properties, or functions that are used
in that line. The template library includes 20 explanation tem-
plates, which are designed to be reused across applications.

Figure 2 shows explanations generated for the subtraction
procedure in Algorithm 1. Assignment statements are ex-
plained using the name of the assigned variable, so the
code top := column.GetCell(0) in line 3 is explained
with the text “Top”. To explain the conditional statement
if top.value < bottom.value in line 6, we fill in the con-
ditional template “<explain boolean expression> <explain
boolean result>”. We populate the boolean expression tem-
plate “Is <variable one> less than <variable two>?” to get
“Is top less than bottom? <boolean result>.” Finally, we fill
the boolean result template with either “Yes” or “No” based
on whether the expression evaluates to true or false. This pro-
duce the final explanation “Is top less than bottom? Yes.”

To display the generated textual explanations in the user in-
terface, our framework relies on application-specific interface
hook functions. One interface hook function must be writ-
ten for each location in the user interface where the designer
wants to display text. As a result, the number of interface
hooks required is highly dependent on the complexity of the
domain. For the subtraction example, text is displayed in two
locations. One interface hook function displays text next to
a grid cell when a variable is assigned to a cell, and another
displays text below the problem for all other types of pro-
gramming language statements.

Interface Highlighting
We provide context to our textual explanations by highlight-
ing visual objects in the user interface, an approach that is
used in many effective software tutorials [6, 14]. Our goal
is to highlight the set of interface objects that are relevant to
the current steps in the procedure, without overwhelming the
student by highlighting too many objects at once. To accom-
plish this, we determine highlighting based on the scope of
variables within the procedure context.

Most imperative languages have a sense of variable scope, or
the context in which a variable is defined and can be refer-
enced. A variable that is defined within a branch of a condi-

tional statement, like the borrow variable in the subtraction
procedure, will only be in scope while that branch is exe-
cuting. We draw a connection between variable scope and
working memory, declaring that the objects a student needs
to keep in working memory while executing a procedure are
equivalent to the variables that are currently in scope. We use
the scope of variables to determine whether the visual repre-
sentations of those objects should be highlighted.

To highlight objects in the user interface, our framework re-
lies on application-specific interface hook functions. One in-
terface hook function must be written for each type of object
defined as a variable in the TPL algorithm. In the subtraction
example, we define four variables: top, bottom, borrow, and
result. All four of the variables are grid cell objects, so in this
example we use one interface hook function that highlights
arbitrary grid cells in the user interface. Using this interface
hook function, our system highlights the objects referenced
by the top and bottom variables while they are in context, as
shown in Figure 2(b). Variables defined in the TPL algorithm
must refer to visual objects in the user interface, however we
have found that all variables do have visual representations in
the procedures we implemented for our prototype systems.

Authoring Process
This framework utilizes domain-independent components
where possible to reduce authoring effort. To apply this
framework to a new application, an educational technologist
first integrates the domain-independent compiler, interpreter,
and explanation templates into their code base. Then, the de-
veloper writes interface hook functions that display textual
explanations and highly visual objects in the user interface.
Finally, the developer writes algorithms in TPL that encode
the problem-solving thought process for each procedure to be
taught. Note that the interface hook functions are only written
once for a given application, and can then be used to explain
multiple TPL algorithms. For example, in our grid mathe-
matics prototype, one set of interface hooks can be used to
explain a broad range of K-12 math procedures such as sub-
traction, long division, and fraction multiplication. The num-
ber of interface hooks required for a given application will
depend highly on the complexity of the problem domain.

4

Figure 3. Screenshot of the grid mathematics application, set up to ex-
plain a greatest common factor problem with Euclid’s Algorithm. The
user can switch to a new procedure using the “Problem Type” menu bar.

PROTOTYPE IMPLEMENTATIONS
Our framework for automatically generating step-by-step
demonstrations can theoretically be used to explain any de-
terministic procedural process. However, it is more appro-
priate for some domains than others. This approach is most
effective in rich domains where many problem types can be
represented through a single interface. The framework is also
best suited to complex procedures with loops and branching.
This represents a wide variety of problem-solving domains
in K-12 education. In this section, we demonstrate how the
framework applies to two distinct domains: a K-12 mathe-
matics application and an educational game. Both applica-
tions are written in ActionScript 3, so we implemented our
Thought Process Language, Compiler, and Interpreter in AS3
as well. Through these prototypes, we show that our frame-
work can produce instructional materials for a variety of pro-
cedures and tasks without any problem-specific design.

K-12 Grid Mathematics
The domain of grid mathematics includes all problems that
can be solved on a two-dimensional grid. This covers a large
portion of K-12 math, including addition, subtraction, long
division, prime factorization, fraction arithmetic, and even al-
gebra. For this prototype, we implemented a general-purpose
grid math application that can display a wide variety of prob-
lem types. Figure 3 shows the application interface displaying
a greatest common factor problem. Users can select the de-
sired procedure using the “Problem Type” drop-down menu.
Step-by-step demonstrations for each procedure are provided
for a progression of increasingly complex problems. Users
step through the explanations by clicking the “next” button.

We wrote three interface hooks for this application: one that
highlights an arbitrary grid cell, one that displays an expla-
nation next to an arbitrary grid cell, and one that displays an
explanation under the problem. These three simple functions
can explain a large variety of procedures. For this prototype,
we implemented three TPL procedures: a subtraction proce-
dure, a multiplication procedure, and a procedure for Euclid’s
algorithm to find the greatest common factor of two numbers.

For each TPL procedure, our prototype can automatically
generate explanations for a massive number of problems. For
example, there are 55 million unique four-digit subtraction
problems. Some are simple, while others require borrowing
or borrowing across zero. Each type of problem is solved
with a different set of steps, which is represented by a trace
through our TPL algorithm. Four-digit subtraction is covered
with 73 unique traces. It would require a lot of effort to author
tutorials for each type of problem individually. Our approach
allows us to explain all problem types automatically.

Educational Puzzle Game
Our second prototype is an educational puzzle game that is
solved with a highly complex procedure. We chose this ap-
plication to show how our approach scales to domains that
require students to make complex decisions. Refraction was
designed to teach fraction concepts to elementary school stu-
dents. To play, the user interacts with a grid containing laser
sources and target spaceships, as shown in Figure 4. The goal
is to satisfy target spaceships by splitting the laser into the
correct fractional amounts. The player uses pieces to change
the laser direction and split the laser into fractional parts.

The most complex levels of Refraction cannot be solved with
a deterministic procedure; heuristic search is sometimes re-
quired. For this prototype, we wrote a TPL procedure that
covers the subset of Refraction levels that can be solved de-
terministically. This procedure is still much more complex
than any of the grid math procedures implemented for our
first prototype. It consists of 80 lines of TPL code and can
solve thousands of distinct Refraction levels.

We wrote 27 interface hooks to explain the problem-solving
process for Refraction. One set of functions highlights the
following objects in the interface: pieces, arrays of pieces,
spaceships, grid cells, grid columns or rows, spaceship frac-
tions, laser fractions, and cardinal directions. Other functions
display textual explanations that point to those same visual
objects. The code we wrote in these interface hooks is very
similar to the code Refraction developers wrote to author the
game’s original introductory tutorials. As a result, the au-
thoring effort was similar to the effort required to write level-
specific tutorials. However, with this approach, our functions
can be used to explain any level solved by our TPL algorithm.

The textual explanations are automatically generated using
explanation templates, as described in the Framework De-
sign section. To effectively describe the complex proce-
dure used to solve Refraction levels, we encoded explana-
tions within the variable names themselves. For example,
the explanation shown in Figure 4(a) was generated from
the assignment of a variable named theShipNeedsThisMuch-
Power. The explanation shown in Figure 4(b) was gen-
erated from a conditional statement that calls the function
areTheseTwoV aluesEqual. By encoding textual explana-
tions directly in the TPL algorithm’s variable and function
names, we can automatically generate detailed walkthroughs
for any game level that can be solved by our TPL algorithm.
This could improve the process of authoring tutorials and
hints for educational games; previous research shows that this
process can be challenging and time-consuming [19].

5

(a) (b) (c)

Figure 4. Screenshots of the Refraction prototype. To play, the student moves pieces from the bin on the right to the grid to bend and split the laser.
Figure (a) shows an explanation of an assignment statement generated by our system. The text is generated from the variable name. Figure (b) shows
an explanation of a conditional statement generated by our system. Figure (c) shows a summary explanation for the backtracking sub-procedure.

SCAFFOLDING MODALITIES
A central benefit of our authoring framework is that it natu-
rally supports the creation of many different types of interac-
tive instructional scaffolding, in addition to the step-by-step
explanations described thus far. In this section, we show how
our framework can be extended to produce tutorial progres-
sions, just-in-time feedback, and fading worked examples.

Tutorial Progressions
The optimal amount of information to provide students as
they work to master a new procedure varies throughout the
learning process. Reigeluth and Stein argue that educators
should introduce the simplest version of a new task first,
and then give students progressively more complex tasks that
build on the original task [22]. For novices, it is therefore
desirable to minimize cognitive load by starting with simple
problems that can be solved with the most straightforward
procedures. For example, when introducing a simple subtrac-
tion problem like 15 − 3, we would not mention the proce-
dure for borrowing because it is not needed in this problem.

To produce explanations with the ideal level of detail auto-
matically, we trace the TPL algorithm for the given problem
before generating the explanations to determine which state-
ments should be explained and which should be skipped. For
each statement that branches, like a loop or a conditional, we
track whether the branching behavior of this statement varies
during the execution of the algorithm for the current prob-
lem. If the statement always executes the same branch, for
example if the “borrowing” conditional in subtraction never
evaluates to true, we skip the explanation for that statement
because it is not required for the current problem.

As a student masters portions of a complex algorithm, less ex-
planation is required. For example, an algorithm for solving
linear equations will include addition and subtraction as sub-
procedures. However, since students studying algebra have
already mastered these procedures, it is not necessary to step
through them in detail. Our approach naturally supports mul-
tiple levels of explanation granularity. If the designer indi-
cates that a sub-procedure should be summarized rather than
explained in detail for a given problem, we automatically gen-
erate a summary explanation by fusing information stored in

the procedure’s comments. To author a sub-procedure sum-
mary, the designer writes a header comment with a high-level
description of the procedure, and indicates which variables
should be highlighted by adding the comment //explain to
the end of the assignment statement for that variable. Fig-
ure 4(c) shows the summary explanation for the backtracking
procedure in Refraction, which is used to determine where
the next piece should be placed on the grid.

A key advantage of these techniques for producing appropri-
ate explanations is that they build on recent work on automat-
ically generating problem progressions for procedural tasks
from an algorithmic representation of the procedure [3]. By
combining our framework with these approaches, it would be
possible use the TPL encoding of a procedure to automati-
cally produce a lesson that introduces practice problems in
order of increasing complexity and explains each one with
an appropriate level of detail. This would remove the need to
author both practice problems and their explanations by hand.

Just-in-Time Feedback
Another effective method of scaffolding learning is by pro-
viding students with feedback just as it is needed. Human
tutors often give hints and suggestions when students make
mistakes. Personalized hints are a central component of most
cognitive tutors [26] and studies show that students perform
better when these tutors provide hints [4]. Our framework
naturally supports of interactive just-in-time feedback.

To show how we can generate interactive feedback directly
from our step-by-step demonstrations, we created a “feed-
back mode” in each of our prototype applications. In this
mode, the application waits for a user action and responds
with a message if the action is incorrect. To author just-in-
time feedback, the designer adds the comment //action to
each line in the TPL algorithm that modifies the user inter-
face. For example, for the subtraction procedure in Algorithm
1, this comment would be added to lines 11, 16, 19, and 22,
all of which set the value of a grid cell to a new number.

While running in “feedback mode”, the interpreter executes
the TPL algorithm silently, without displaying any explana-
tions, until it reaches a line with an //action comment. Then,

6

(a) (b) (c)

Figure 5. Screenshots of the progression for Euclid’s Algorithm that gradually fades between step-by-step explanations and independent problem
solving. Figure (a) shows a full demonstration, Figure (b) shows the system asking the student to perform one step with help, and Figure (c) shows
independent problem solving with just-in-time feedback.

the system waits until the user performs an action. If the user
action does not match the expected action, then the user has
made a mistake. The designer can define how many incorrect
tries the students can make before the correct steps are ex-
plained. If the student exhausts all of their attempts, the inter-
preter reverts the incorrect action, backtracks to the previous
//action comment, and displays a step-by-step demonstra-
tion of the steps the student should have made between their
last correct action and their mistake.

This approach allows us to leverage the power of the inter-
preter to provide just-in-time feedback that directly targets
student mistakes with minimal authoring effort.

Fading Worked-Out Examples
The typical method for teaching procedures begins with a
full demonstration of the procedure and ends with the stu-
dent solving problems without help. One limitation of this
approach is that the transition between demonstrations and in-
dependent problem solving is often abrupt; students observe a
teacher demonstration on the board and then solve worksheet
problems without help. Some researchers have suggested that
scaffolding should be used to smooth this transition [5, 23].
Renkl et al. describe a method where some steps of a pro-
cedure are demonstrated while other steps are completed by
the student. By gradually reducing the number of demon-
strated steps, the student eventually learns to solve the prob-
lem without help. They found that this type of gradual fading
improved student performance on near-transfer tasks [23].

Initial studies that explore the effectiveness of fading worked-
out examples have all used explanations and fading that were
authored by hand for each problem [17]. Melis et al. have
explored methods of automatically generating and adapting
fading examples within the context of the ActiveMath intelli-
gent tutoring system [17], but this approach does not gener-
alize to other interactive learning environments or domains.
Our approach naturally facilitates fading worked-out exam-
ples across multiple application domains.

We extended our framework to support fading in both of our
prototype applications. To author fading for a given exam-

ple, the designer indicates in the problem definition which
actions in the TPL algorithm should be demonstrated and
which should be performed by the student. Actions can also
be fast-forwarded to focus more directly on a new part of the
procedure. By defining whether each action in the TPL al-
gorithm should be explained, performed by the user, or fast-
forwarded, we can automatically create scaffolding that pro-
vides that level of fading. Figure 3 shows three different lev-
els of fading that we created for Euclid’s Algorithm in the
grid math application. In Figure 5(a) the procedure is fully
explained, in Figure 5(b) the student is given instructions but
must complete the step on their own, and in Figure 5(c) the
student solves the problem independently and receives just-
in-time feedback in response to any mistakes.

The current design of our framework requires the designer
to define which actions should be explained, fast-forwarded,
and completed by the student for each problem. However, it
could be extended further to produce faded progressions auto-
matically. Gradual fading between worked-out examples and
independent problem solving has great potential to support
students as they learn new procedures, however this content
is time-intensive to author and therefore difficult to study. We
hope this new approach to authoring faded progressions can
reduce the barrier to using and studying this technique.

USER EVALUATION
To gain a better understanding of the process of authoring
scaffolding using our framework and the quality of the gen-
erated explanations, we conducted two user studies: one with
educational technologists and one with fifth-grade students.

TPL Authoring User Study
The process of authoring step-by-step demonstrations with
our framework consists of two parts: writing interface hook
functions for the problem domain and writing a TPL algo-
rithm for each procedure to be taught. In this study, we specif-
ically examine the process of authoring TPL algorithms. To
generate effective explanations, a TPL algorithm must ab-
stract information into conditional blocks so that it is only
explained when needed, and use variable names that describe

7

Figure 6. Screenshot of the authoring version of the grid mathematics
application used in the authoring user study. Users can write Thought
Process Language procedures in the panel to the right and step through
the explanations they produce.

the human thought process. This requires an unusual pro-
gramming style that could be challenging for authors. In con-
trast, authoring interface hooks requires standard program-
ming and design skills. We were therefore most interested
in evaluating whether educational technologists can learn the
unique skill set required to write effective TPL algorithms.

To evaluate the process of writing TPL algorithms, we con-
ducted a small-scale user study with three educational tech-
nologists recruited through our institution. All three partic-
ipants were professional developers of educational applica-
tions with no expertise in designing instructional content. We
asked participants to write a TPL procedure for subtracting
one to three digit numbers that supported borrowing. We
developed an authoring version of the grid mathematics ap-
plication for this study, which included a code-editing panel
as shown in Figure 6. To author the step-by-step demon-
strations, participants wrote their TPL procedure in the code
panel, clicked “Compile”, and stepped through the procedure
for a set of provided example problems. We gave the par-
ticipants a brief overview of the system before they began the
task, and provided a few resources. This included documenta-
tion for the classes that their TPL procedures could reference,
descriptions of the system’s interface hooks, and an example
procedure for Euclid’s Algorithm.

All three participants produced TPL algorithms that solved
the set of example problems we provided. They spent be-
tween 2.5 and 4 hours on the task in total, a reasonable
amount of time considering that their procedures could ex-
plain all three-digit subtraction problems. The explanations
generated by their algorithms provided clear descriptions of
the subtraction procedure, although two participants included
extra steps such as counting the number of columns rather
than looping over them. Most interestingly, the authors each
described a slightly different thought process for solving sub-
traction problems, displaying our framework’s ability to sup-
port multiple types of explanations. All three participants it-
erated on their procedures extensively during the authoring
process, and were able to learn effective ways of expressing
the thought process using the feedback provided by the gen-
erated explanations themselves. This shows that educational

technologists are able to learn to encode the problem-solving
thought process to produce high-quality step-by-step tutorials
without extensive training.

While we have not formally evaluated the process of author-
ing interface hook functions, we found it to be straightforward
for our example implementations. This process requires stan-
dard programming and design skills, and a familiarity with
the target application. The effort required to author the inter-
face hooks is highly dependent on the complexity of the appli-
cation: we wrote three interface hooks for the grid math pro-
totype and 27 for Refraction. Furthermore, interface hooks
are only implemented once per problem domain, while TPL
is written for each procedure to be taught.

Student User Study
The textual explanations generated by our framework are
phrased slightly differently than hand-authored explanations
due to the format of the underlying algorithm. We were
therefore interested in evaluating whether the generated ex-
planations can effectively teach students a new procedure.
To explore this question, we collaborated with an elementary
school math teacher to conduct a user study with two of his
fifth-grade classes. We chose to teach Euclid’s Algorithm for
finding the greatest common factor of two integers because
this is a procedure that is rarely taught in schools; the teacher
we worked with was not familiar with the procedure.

We created two computer lessons to teach Euclid’s Algorithm
using our grid math prototype. One lesson displayed step-by-
step demonstrations of the procedure for three example prob-
lems, and then provided a set of 18 practice problems with
just-in time feedback. The second lesson presented the same
21 problems in the same order, but faded gradually between
demonstrations and independent problem solving. We com-
pared these two computer-based lessons to a traditional les-
son given by the math teacher to see how the automatically-
generated explanations compared to human explanations.

The Euclid’s Algorithm lesson was conducted during a 50-
minute math period. The first class received the traditional
lesson, and the second class was split into two groups who
received the two computer-based lessons. In both classes, the
teacher began by giving an identical five-minute overview of
factors and greatest common factors. Next, students had 10
minutes to work on a paper pre-test with three greatest com-
mon factor problems. One problem could be solved by listing
the factors of each number and selecting the greatest common
one, but the other two problems were designed to be difficult
to solve without using Euclid’s Algorithm.

After finishing the pre-test, the first class was given a tradi-
tional 25-minute lesson by their teacher. We asked him to
teach Euclid’s Algorithm as he would teach any new pro-
cedure, but had him introduce the same set of 21 example
problems in the same order as in the computer lessons. The
teacher demonstrated the procedure for two example prob-
lems on the white board, and then asked students to work
on the 19 practice problems on their own while he answered
questions and worked with individual students. The second
class moved to computers after completing the pre-test at their

8

desks. Half of the students, randomly chosen, logged into a
lesson with demonstrations and practice problems, while the
other have logged into a lesson that faded between the demon-
strations and practice problems. The students were given 15
minutes to interact with the system after logging in.

After the lessons, students went back to their desks to take the
paper post-test. This test used the same three questions as the
pre-test, given in a different order. We chose to use the same
questions to be sure that the tests were of equal difficulty.
Students were given 10 minutes to work on the post-test.

Results
We collected data from 28 students, and were given informed
consent for participation by the students, their parents, their
teacher, and their school principal. Of these students, 18 re-
ceived the traditional lesson, 5 received the computer lesson
with just-in-time feedback, and 5 received the computer les-
son with fading worked-out examples. Due to a server is-
sue we lost data from several students in the computer class,
hence the smaller number of participants in these conditions.

We used non-parametric statistics in our analysis because the
students’ scores on the pre- and post-tests were non-normally
distributed. We found that overall, scores improved between
the pre- and post-test. We used a Wilcoxon rank sums test
to measure the effect of test (either pre or post) on scores,
showing that students performed significantly better on the
post-test (Z=-3.80, p<0.0001), with a median of 2.5 ques-
tions correct out of three, compared to 0 correct on the pre-
test. We also calculated a learning gain for each student by
taking the difference between their pre- and post-test scores,
and found that the median learning gain was 1 point.

Next, we used a Kruskal-Wallis test to determine whether
condition had any impact on students’ scores. There was no
significant difference in pre-test scores (χ2=3.11, n.s.). Stu-
dents in the traditional lesson condition got a median of 1
problem correct, compared to 0 for the two computer lesson
conditions. There was also no significant difference in post-
test scores (χ2=3.11, n.s.); students in the traditional lesson
condition got a median of 3 problems correct, compared to 2
problems correct for students in the fading computer lesson,
and 1 problem correct for students in the just-in-time feed-
back computer lesson. Finally, condition had no significant
impact on learning gains (χ2=0.01 n.s.). Students in all three
conditions had a median learning gain of 1 point.

Our results show that students who received the two com-
puter lessons had learning gains roughly equivalent to those
who received the traditional lesson. Only two students did not
use Euclid’s Algorithm to solve the post-test problems, one
in the traditional lesson condition and one in the just-in-time
feedback condition. This shows that the generated explana-
tions were able to effectively convey a new procedure to stu-
dents, even over a very short period of time. Students had less
time-on-task and no help from their teacher with the computer
lessons, but still performed equally well on the post-test.

While these results are promising, our sample size is small
and we only looked at one TPL algorithm in this study. In
future work, it would be valuable to conduct a more thor-

ough experiment that focuses on the student experience. This
would help us gain a better understanding of the strengths and
weaknesses of our automatically generated explanations.

CONCLUSION
In this work, we present a new framework for automatically
generating interactive scaffolding to teach the entire space
of problems that can be solved with a given procedure. We
encode the problem-solving thought process as an algorithm
and use this model to generate explanations. This approach
has a number of advantages. Given a small set of mappings
between programming language constructs and visual objects
in the user interface, we can produce tutorials for any Thought
Process Language procedure that can be applied in the appli-
cation. Furthermore, this framework naturally facilitates the
authoring of problem progressions that introduce information
gradually, just-in-time feedback, and scaffolding that fades
between demonstrations and independent problem solving.

We demonstrate the generality of our approach by showing
how the framework applies to two distinct problem-solving
domains: a K-12 math application and an educational game.
For each prototype, we authored interface hooks and TPL
algorithms that produce in-depth explanations for problem-
solving procedures in that domain. We also conduced an au-
thoring user study to determine whether educational technol-
ogists can effectively encode a problem-solving procedure in
our Thought Process Language. All three participants pro-
duced high-quality TPL procedures to explain subtraction in
a reasonable amount of time. Finally, we conducted a user
study with fifth grade students to determine whether the ex-
planations generated by our framework can effectively teach a
new procedure. This study showed that students who received
computer lessons had similar learning gains to students who
received a traditional lesson from their math teacher.

Our new approach for authoring interactive instructional scaf-
folding is designed to maximize the content that educational
technologists with programming expertise can create. The
authoring effort required to write interface hooks and TPL al-
gorithms will not be not justified in all domains. However,
our framework has incredible potential in domains where we
would like to generate scaffolding for a wide variety of exam-
ple problems. Perhaps most importantly, this approach natu-
rally supports the creation of a variety of different types of in-
structional scaffolding, including problem progressions, just-
in-time feedback, and fading worked-out examples. Since
these types of scaffolding are costly to produce, many im-
portant questions about the relative effectiveness of different
scaffolding methods remain unanswered. We hope that this
framework will be used to improve tutorial authoring and also
expand our understanding of effective scaffolding design.

ACKNOWLEDGMENTS
We would like to thank our study participants, the creators
of Refraction, and Craig Connor for his work on the grid
mathematics prototype. This work was supported by the Of-
fice of Naval Research grant N00014-12-C-0158, the Bill and
Melinda Gates Foundation grant OPP1031488, the Hewlett
Foundation grant 2012-8161, Adobe, and Microsoft.

9

REFERENCES
1. Aleven, V., McLaren, B. M., Sewall, J., and Koedinger,

K. R. The cognitive tutor authoring tools (CTAT):
preliminary evaluation of efficiency gains. In
International Conference on Intelligent Tutoring
Systems, ITS’06 (2006), 61–70.

2. Aleven, V., Mclaren, B. M., Sewall, J., and Koedinger,
K. R. A new paradigm for intelligent tutoring systems:
Example-tracing tutors. Int. J. Artif. Intell. Ed. 19, 2
(Apr. 2009), 105–154.

3. Andersen, E., Gulwani, S., and Popović, Z. A
trace-based framework for analyzing and synthesizing
educational progressions. In CHI (2013), 773–782.

4. Anderson, J. R., Corbett, A. T., Koedinger, K. R., and
Pelletier, R. Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences 4, 2 (1995), 167–207.

5. Atkinson, R. K., Renkl, A., and Merrill, M. M.
Transitioning from Studying Examples to Solving
Problems: Effects of Self-Explanation Prompts and
Fading Worked-Out Steps. Journal of Educational
Psychology 95, 4 (2003), 774–83.

6. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.
Docwizards: A system for authoring follow-me
documentation wizards. In UIST (2005), 191–200.

7. Blessing, S. B., Gilbert, S. B., Ourada, S., and Ritter, S.
Authoring model-tracing cognitive tutors. International
Journal of Artificial Intelligence in Education 19, 2
(2009), 189 – 210.

8. Brawner, K., Holden, H., Goldberg, B., and Sottilare, R.
Recommendations for modern tools to author tutoring
systems. In The Interservice/Industry Training,
Simulation & Education Conference (I/ITSEC) (2012).

9. Chi, P.-Y., Ahn, S., Ren, A., Dontcheva, M., Li, W., and
Hartmann, B. MixT: automatic generation of
step-by-step mixed media tutorials. In UIST (2012),
93–102.

10. Corbett, A., Koedinger, K. R., and Anderson, J. R.
Intelligent tutoring systems. In Handbook of
Human-Computer Interaction, Second Edition,
M. Helander, T. K. Landauer, and P. Prahu, Eds. Elsevier
Science, Amsterdam, 1997, 849–874.

11. Glazewski, K. D., and Ertmer, P. A. Scaffolding
disciplined inquiry in problem-based learning
environments. International Journal of Learning 12, 6
(2005), 297–306.

12. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and
Igarashi, T. Generating photo manipulation tutorials by
demonstration. In ACM SIGGRAPH (2009), 66:1–66:9.

13. Harms, K. J., Cosgrove, D., Gray, S., and Kelleher, C.
Automatically generating tutorials to enable middle
school children to learn programming independently. In
International Conference on Interaction Design and
Children, IDC ’13 (2013), 11–19.

14. Kelleher, C., and Pausch, R. Stencils-based tutorials:
Design and evaluation. In CHI (2005), 541–550.

15. Koedinger, K. R., Anderson, J. R., Hadley, W. H., and
Mark, M. A. Intelligent tutoring goes to school in the
big city. International Journal of Artificial Intelligence
in Education 8 (1997), 30–43.

16. Li, W., Zhang, Y., and Fitzmaurice, G. Tutorialplan:
Automated tutorial generation from cad drawings. In
IJCAI, F. Rossi, Ed., IJCAI/AAAI (2013), 2020–2027.

17. Melis, E., Goguadze, G., and Saarl, U. D. Towards
adaptive generation of faded examples. In International
Conference on Intelligent Tutoring Systems , LNCS,
Springer- Verlag (2004), 762–771.

18. Olsen, J., Belenky, D., Aleven, V., Rummel, N., Sewall,
J., and Ringenberg, M. Authoring tools for collaborative
intelligent tutoring system environments. In Intelligent
Tutoring Systems (2014), 523–528.

19. O’Rourke, E., Ballweber, C., and Popović, Z. Hint
systems may negatively impact performance in
educational games. In Proceedings of Learning @ Scale,
L@S ’14 (2014), 51–60.

20. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J.,
Bourdev, L., Avidan, S., and Cohen, M. F.
Pause-and-play: automatically linking screencast video
tutorials with applications. In UIST (2011), 135–144.

21. Ramesh, V., Hsu, C., Agrawala, M., and Hartmann, B.
Showmehow: Translating user interface instructions
between applications. In UIST (2011), 127–134.

22. Reigeluth, C. M., and Stein, F. S. The elaboration theory
of instruction. In Instructional Design Theories and
Models: An Overview of their Current States, Lawrence
Erlbaum (Hillsdale, NJ, 1983).

23. Renkl, A., Atkinson, R. K., Maier, U. H., and Staley, R.
From example study to problem solving: Smooth
transitions help learning. Journal of Experimental
Education 70, 4 (2002), 293–315.

24. Sottilare, R. A. Considerations in the development of an
ontology for a generalized intelligent framework for
tutoring. In International Defense & Homeland Security
Simulation Workshop in Proceedings of the I3M
Conference (2012), 19–25.

25. Stamper, J., Barnes, T., Lehmann, L., and Croy, M. The
hint factory: Automatic generation of contextualized
help for existing computer aided instruction. In
Proceedings of the 9th International Conference on
Intelligent Tutoring Systems Young Researchers Track
(2008), 71–78.

26. VanLehn, K. The behavior of tutoring systems.
International Journal of Artificial Intelligence in
Education 16 (2006), 227–265.

27. Wood, D., Bruner, J., and Ross, G. The role of tutoring
in problem solving. Journal of Child Psychology and
Psychiatry 17 (1976), 89–100.

10

	Introduction
	Related Work
	Intelligent Tutoring Systems
	Software Tutorials

	Framework Design
	Thought Process Language
	Compiler and Interpreter
	Interface Hooks
	Textual Explanations
	Interface Highlighting

	Authoring Process

	Prototype Implementations
	K-12 Grid Mathematics
	Educational Puzzle Game

	Scaffolding Modalities
	Tutorial Progressions
	Just-in-Time Feedback
	Fading Worked-Out Examples

	User Evaluation
	TPL Authoring User Study
	Student User Study
	Results

	Conclusion
	Acknowledgments
	REFERENCES

