
Pyrus: Designing A Collaborative Programming
Game to Support Problem-Solving Behaviors
Joshua Shi∗

Northwestern University
joshshi@u.northwestern.edu

Armaan Shah∗

Northwestern University
armaanshah96@gmail.com

Garrett Hedman
Northwestern University

ghedman@u.northwestern.edu

Eleanor O’Rourke
Northwestern University
erourke@northwestern.edu

ABSTRACT
While problem solving is a crucial aspect of programming,
few learning opportunities in computer science focus on
teaching problem-solving skills like planning. In this paper,
we present Pyrus, a collaborative game designed to encour-
age novices to plan in advance while programming. Through
Pyrus, we explore a new approach to designing educational
games we call behavior-centered game design, in which de-
signers first identify behaviors that learners should practice
to reach desired learning goals and then select game mechan-
ics that incentivize those behaviors. Pyrus leverages game
mechanics like a failure condition, distributed resources, and
enforced turn-taking to encourage players to plan and col-
laborate. In a within-subjects user study, we found that pairs
of novices spent more time planning and collaborated more
equally when solving problems in Pyrus than in pair pro-
gramming. These findings show that game mechanics can be
used to promote desirable learning behaviors like planning
in advance, and suggest that our behavior-centered approach
to educational game design warrants further study.

CCS CONCEPTS
•Human-centered computing→Collaborative and so-
cial computing systems and tools;

KEYWORDS
Educational Games, Collaborative Learning, CS Education,
Problem Solving, Behavior-Centered Game Design

∗The first and second authors contributed equally to this paper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300886

ACM Reference Format:
Joshua Shi, Armaan Shah, Garrett Hedman, and Eleanor O’Rourke.
2019. Pyrus: Designing A Collaborative Programming Game to
Support Problem-Solving Behaviors. In CHI Conference on Human
Factors in Computing Systems Proceedings (CHI 2019), May 4–9, 2019,
Glasgow, Scotland Uk. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3290605.3300886

1 INTRODUCTION
Programming has historically been, and continues to be,
notoriously difficult for novices to learn and master [32].
Despite growing interest in computer science due to the
industry’s demand for programmers, drop-out rates in CS
courses are still high [5, 7, 51, 59]. One reason novices strug-
gle with programming is that they often lack the required
problem-solving skills to formulate and plan complex pro-
grams [43]. Yet while many researchers have argued that
problem-solving is a crucial aspect of programming [19, 24,
57], few learning opportunities in computer science focus
on teaching problem-solving skills like planning [40].
To remedy this, researchers have begun to explore ap-

proaches for scaffolding and teaching novices problem-solving
skills in the context of computer science. Some have ex-
plored giving students explicit guidance on effective problem-
solving approaches [40] and designing curricula around
problem-based learning to emphasize problem-solving skills
[34]. Others have proposed using collaboration as a way
to help novice programmers solve challenging problems
more effectively, most commonly in the form of pair pro-
gramming [45, 62]. Despite these efforts, problem-solving
remains largely ignored in introductory CS courses, and we
have more to learn about effective approaches for teaching
problem-solving skills in computer science.
One potentially effective approach for teaching problem-

solving is through serious games, or games designed for a
primary purpose other than entertainment. Video games
are known for their ability to motivate players to develop
complex problem-solving skills, and previous analyses of
games have shown their potential to achieve educational
goals [14, 25, 42, 52]. However, empirical studies evaluating
the effectiveness of educational games have yielded mixed
results [16, 42, 52, 64]. Researchers have noted that successful
games are typically designed around pedagogical principles

https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/3290605.3300886

[42, 52], but we still lack a design process for effectively
embedding pedagogical principles into games.
In this paper, we present Pyrus, a collaborative program-

ming game that encourages novices to plan before imple-
menting code. Pyrus uses collaboration to encourage novices
to discuss their ideas, and leverages game mechanics like
distributed resources, a failure condition, and enforced turn-
taking to incentivize advance planning and effective col-
laboration. Through Pyrus, we explore a new approach to
designing educational games we call behavior-centered game
design. Using this approach, game designers first identify
specific behaviors they want learners to practice to reach
desired learning goals, and then choose game mechanics
that promote those behaviors. The aim of behavior-centered
game design is to ensure that the core game-playing strate-
gies align with the targeted learning goals.

We evaluated Pyrus through a within-subjects study (n =
18) with two conditions, in which pairs of novice undergrad-
uate students worked on programming challenges in both
Pyrus and a pair programming control condition. Through
a mixed-methods analysis of conversation, behavioral data,
and interviews, we found that pairs spent nearly twice as
much time planning their solutions in Pyrus than they did in
pair programming, and that Pyrus encourages them to par-
ticipate more equally. While some participants found Pyrus
to be fun and enjoyable, others were frustrated by the me-
chanics and felt that the game’s constraints caused them to
work slowly and inefficiently, suggesting a need for further
iteration. These findings show that an educational game can
encourage novice programmers to practice problem-solving
skills, and provides initial evidence that educational games
designed using a behavior-centered approach can effectively
incentivize desired learning behaviors.

2 RELATEDWORK
Researchers have studied problem-solving in the domain of
programming extensively, and have explored a variety of
approaches for supporting novices as they develop problem-
solving skills. We first review related work on problem-
solving and collaborative learning, then discuss educational
games in general and programming games specifically.

Problem Solving in Programming
Problem solving is a crucial skill for programmers [57]. Re-
searchers have developed a variety of models of the program-
ming problem-solving process, most of which include the
following stages: (1) understanding the problem, (2) planning
a solution, (3) implementing the solution, (4) and testing and
debugging the solution [19, 40, 43, 63]. However, novices
often struggle to develop the skills needed to execute this
problem-solving process effectively. Research on novice pro-
grammers has repeatedly concluded that, unlike experts,

novices do not practice problem-solving behaviors such as
planning in advance [37, 54, 60, 63]. Given that novices strug-
gle to develop problem-solving skills, researchers have ar-
gued that introductory courses and educational resources
must go beyond teaching syntax and semantics [40, 57].

A variety of approaches have been explored to help novices
develop problem-solving skills, including resources that scaf-
fold problem solving [39, 40, 50], a new CS curriculum that
focuses on problem-solving skills [34], and interventions
that aim to help novices when they get stuck [12, 28, 49]. For
example, Loksa et. al. found that students have higher self-
efficacy and metacognitive awareness when provided a list
of problem-solving stages as guidance [40]. Linn et. al. found
that expert commentaries on the process of solving complex
programming problems can help students learn problem-
solving skills [39]. Cao et. al. provide context-sensitive sug-
gestions to help stuck users through an “Idea Garden” [12].
We contribute to research by exploring a new approach

for encouraging novices to practice problem solving. Rather
than directly teaching or scaffolding the problem-solving
process, Pyrus uses game mechanics to incentivize behaviors
like planning in advance, deepening our understanding of
different approaches for teaching problem solving.

Collaborative Learning
Collaborative learning has been studied extensively in the
learning sciences [30], and research shows that the active
discussion of ideas in small groups can promote both engage-
ment and critical thinking [26]. However, empirical stud-
ies show that not all collaborative learning experiences are
equally effective [20]. Dillenbourg and Schneider identified
a set of mechanisms that make collaborations effective, in-
cluding explaining reasoning, considering and comparing
different approaches, and regulating mutual understanding
of a problem [21]. Researchers have explored a variety of
methods for structuring collaborative activities to foster ef-
fective collaborations, often referred to as scripts [20]. One
common scripting approach, known as Jigsaw, gives each
member of a group exclusive access to a necessary part of
the problem solution to prevent any individual from being
able to solve the problem alone [4]. Jigsaw has been used to
foster collaboration in a variety of learning environments,
including cognitive tutoring systems [46] and CS1 labs [56].
In computer science education, the most widely adopted

method of introducing collaboration is through pair program-
ming [44, 45, 62], a core tenant of the eXtreme Programming
methodology [6]. In pair programming, two partners work
together to solve programming problems: the pilot controls
the keyboard and implements the solution, while the co-pilot
checks the implemented code for errors and bugs. Research
shows that pair programming helps students solve problems
more quickly and effectively [62] and that novices who pair

program are more confident in their work than students who
do not pair [45]. However, pair programming is not strongly
scripted and the pilot and co-pilot roles can break down in
practice [13]. We are not aware of any research that aims to
re-design the pair programming experience to improve its
collaborative effectiveness.

We contribute to this body of research by exploring a new
method of structuring collaboration between pairs of pro-
grammers by using game mechanics to directly incentivize
effective collaborative behaviors. Pyrus’ design builds on
scripting and Jigsaw by using mechanics like enforced turn-
taking and distributed resources to promote collaboration.

Educational Games
An extensive body of prior work has investigated the poten-
tial of teaching programming through educational games. Re-
searchers and practitioners have designed games that teach
language constructs [3, 22], computational thinking and algo-
rithm design [9, 29, 31, 33, 47], and program comprehension
via testing and debugging [8, 38]. For example, inWu’s Castle,
novice programmers learn language constructs by writing
arrays and loops to accomplish game goals [22], and in Code
Hunt, players practice debugging skills by solving puzzles
given only clues and test cases for the target algorithm [8].
While games have been developed to teach various aspects
of programming, we are not aware of any that specifically
promote planning during problem solving.
Researchers agree that educational games have potential

to support learning [14, 25, 42], but we still have a limited un-
derstanding of how to integrate learning theory into games
to create effective educational experiences. As a result, re-
searchers have created resources to help educational game de-
signers. Aleven et. al. developed a framework that combines
learning objectives and instructional design principles with
game mechanics, dynamics, and aesthetics [1]. Culyba devel-
oped a framework for designing transformational games that
change their players by identifying desired transformations
(e.g. learning outcomes) and the barriers that inhibit them
[17]. Wendel et. al. present a set of requirements for the de-
sign of collaborative learning games [61]. These approaches
focus on identifying high-level instructional principles and
game affordances that could support learning, rather than
understanding how to choose low-level game mechanics
based on a stated behavioral goal.
In this work, we explore a new behavior-centered game

design approach that focuses on identifying game mechanics
that will promote desirable low-level learning behaviors. We
see this approach as one which could compliment higher-
level educational game design frameworks. Some educational
games have been developed around stated behavioral goals:
“brain points” were added to the math game Refraction to

promote persistence and strategy [53], andGrACE teaches ab-
straction and algorithms by encouraging players to practice
stepwise thinking [31]. We build on this work by formalizing
the behavior-centered approach to game design.

3 BEHAVIOR-CENTERED GAME DESIGN
Our goal in this work is to design a game that encourages
novice programmers to practice more programming problem-
solving behaviors, in particular planning. To achieve this
goal, we explore a new approach for creating educational
games that we call behavior-centered game design. The key
insight of this approach is that the game designer identifies
specific low-level behaviors they want players to practice
in order to reach high-level learning objectives, rather than
targeting a high-level learning objective outright.
Specifically, behavior-centered game design is a process

through which game designers (1) identify the obstacles
learners face in reaching a learning outcome, (2) identify the
behaviors that learners need to practice to reach the learning
outcome, and (3) select game mechanics that will directly
incentivize those behaviors to overcome the obstacles. These
game mechanics are then assembled into a playable game
which can be evaluated for its effectiveness in encouraging
the targeted behaviors. For Pyrus, our desired learning out-
come was for novice programmers to develop programming
problem-solving skills, in part through effective collabora-
tion. We detail our behavior-centered approach below.

Problem-solving
Obstacle: novice programmers struggle with the problem-solving
process. Novices commonly make errors during problem
solving and omit early stages of the process such as planning
[36, 43, 58]. Without planning in advance, novices may work
toward a solution with a poor understanding of the problem,
which leads to mistakes like writing unnecessary code or not
accounting for edge cases [23]. These types of errors are no-
toriously difficult for novices to debug [2]. In addition, a lack
of planning means that novices are decomposing problems
and composing solutions simultaneously, two steps which
are already independently challenging [36]. These difficulties
are present even when novices work in pairs [27].

Behavior: plan solutions in advance. To address these difficul-
ties, we focused on incentivizing planning. In the planning
stage of problem-solving, programmers devise a potential
solution and evaluate it through processes likemental simula-
tion or writing pseudocode. While programmers should plan
before implementing a solution, the programming problem-
solving process is not strictly ordinal and programmers may
revisit the planning stage after implementing a partial so-
lution. Our goal was to encourage planning in general, and
planning in advance of implementation in particular.

Mechanics: discrete actions, distributed resources, and a failure
condition. To encourage novices to plan their solutions in ad-
vance, we included three gamemechanics in Pyrus that make
it difficult for players to write programs without planning:
discrete actions, distributed resources, and a failure condition.
In Pyrus, players make progress by executing discrete actions,
which are the building blocks that players use to compose
their solutions. We hypothesized that discretizing the act
of writing code using actions would encourage novices to
work more deliberately, resulting in more planning. In ad-
dition, some programming constructs that players need to
solve problems are only available if they possess the corre-
sponding distributed resources, which are non-transferable
and can only be used by the player who holds the resource.
We hypothesized that distributed resources would encourage
players to plan while determining how to use their respective
resources most effectively. Finally, the number of actions a
pair can execute is limited by a failure condition; if players do
not solve the problem in a given number of actions, they lose
the game. We hypothesized that the failure condition would
create urgency and encourage players to use their discrete
actions and distributed resources deliberately to avoid losing.

Collaboration
Obstacle: novices fail to collaborate effectively. While collabo-
ration could encourage novices to discuss their ideas and plan
more effectively, research on collaborative learning shows
that people often struggle to collaborate without support.
According to Dillenbourg et al., collaborative tasks must
be structured to encourage effective interactions if they are
to succeed [20, 21]. While pair programming is commonly
employed in introductory computer science courses, this
practice does not provide enough structure to guarantee ef-
fective collaboration. Partners are encouraged to take on the
pilot and co-pilot roles, but these roles are not structured
and switching between roles is often unenforced. In prac-
tice, research shows that the roles sometimes break down
entirely, with little or no distinction between partners [13].
Furthermore, since partners take on the roles ad hoc, there is
nothing to stop the pilot from dominating the conversation
and implementation, leaving the co-pilot with nothing to do.
Pairs are free to practice pre-established bad programming
habits, even if they do so collaboratively.

Behavior: participate equally in problem solving. In the con-
text of programming, we define an “effective collaboration”
as one in which both partners are actively involved in dis-
cussing, designing, and implementing the solution to a prob-
lem. Rather than allowing one partner dominate by spending
more time in the pilot role, we would like to see both part-
ners participate equally in the problem-solving process and
in particular the construction of the solution.

Figure 1: The Pyrus interface, which displays §1) the current
player’s turn, §2) the pilot’s number of remaining actions,
§3) the number of cards in the deck, §4) the problem prompt,
§5) the editor, §6) available actions (i.e. write, consume, and
discard), §7) test cases, §8) buttons to run or submit code, §9)
the partner’s hand, §10) the player’s hand, and §11) a button
to end the turn. §6 and §11 are omitted in the co-pilot’s in-
terface, since the co-pilot cannot perform actions.

Mechanics: enforced turn-taking and distributed resources. To
encourage players to participate equally in problem solv-
ing, we included two game mechanics in Pyrus that foster
positive interdependence, or the feeling that teammates are
reliant on each other’s success as part of their own [65]: en-
forced turn-taking and distributed resources. In Pyrus, enforced
turn-taking forces players to switch roles at regular inter-
vals. Furthermore, turns are designed to be short enough to
keep both players actively engaged. We hypothesized that
frequent turn-taking would encourage equal participation.
In addition, distributed resources provide each player with
only some of the programming constructs required to solve
a problem. While turns enforce a division of labor, resources
enforce a division of responsibilities. We hypothesized that
making it impossible for one partner to succeed without the
help of their teammate would encourage partners to discuss
and coordinate, resulting in equal participation.

4 PYRUS SYSTEM
Pyrus (Figure 1) is a two-player game in which programmers
collaborate in person to solve programming problems. As in
traditional programming, players write and debug real code.
Unlike traditional programming, players must work with
special game mechanics and rules to solve their problem. In
Pyrus, two programmers work together to write a program
to solve a problem specified in a prompt (§4) with the goal
of passing all provided test cases (§7). Each player works
on their own computer, but they write code in a shared

editor (§5) toward a common goal (i.e. players win or lose
together). During the game, players take turns writing code
and observing (pilot and co-pilot roles, respectively).

Setup
Before play starts, each player is dealt four cards from a
deck (§3). Players can see both their own (§10) and their
partner’s cards (§9), but may only use their own. Each card
describes a programming construct (e.g. loop, conditional,
data structure) and is non-transferable. These constructs
can only be written by playing the appropriate card, and
furthermore can only be written by the player who has that
card in his or her hand. Once the hands are dealt, a player is
selected by the system to be the pilot (§1) and play begins.

Play
On each turn, the pilot can perform up to four actions (§2).
There are three types of actions (§6). The write code action
allows the the pilot to write a single statement to declare
a variable of a primitive data type or perform an operation
on existing variable(s) (e.g. var x = 12). The consume card
action allows the pilot to use a card in his or her hand to
implement the corresponding construct in the editor. That
card is then discarded. The discard card action allows the
pilot to discard a card and draw a new one from the deck.

The pilot may elect to end his or her turn at any time (§11).
At the end of each turn, the pilot draws two cards from the
deck and the other player (the co-pilot) starts a new turn
as the pilot. Players trade turns like this until they trigger
either the win or failure condition. Playerswin if at any point
during they game, they press the button to run their code
against the test cases (§8), and all tests pass. Players fail if
a player attempts to draw a card (either by using a discard
action or automatically at the end of a turn) when the deck
is empty. After failure the game is reset to the start state.
In Pyrus, the cards are distributed resources. The game

uses enforced turn-taking to structure play, and players per-
form up to four discrete actions per turn. Play ends when the
players complete a challenge or when the failure condition is
triggered. These four gamemechanics were designed to work
in concert to encourage our two target behaviors: planning
in advance and equal participation in problem solving.

Representative scenario
To illustrate a game of Pyrus, consider the following example
game played by novice programmers JoJo and Arby. When
JoJo and Arby join the game, each player is dealt four cards
and JoJo is selected as pilot. JoJo is shown the interface in
Figure 1. Arby’s interface shows everything that JoJo’s does
except the three action buttons and the End Turn button.
The solution requires a loop and conditional, and while

JoJo has a loop card, only Arby has a conditional. They decide

that JoJo should use a Write Code action to declare a variable
which will keep track of the loop’s termination condition.
JoJo clicks Write Code, declares a primitive variable (e.g. var
count = 0;), and submits his action. Next, JoJo decides to
implement his loop. He clicks Consume Card, selects his loop
card, and writes for (var i = 0; i < arr.length; i++)
{ }. Now, both players agree that Arby should implement
her conditional, so JoJo clicks End Turn. As JoJo’s turn ends,
he draws two cards, and his interface displays that Arby is
now pilot. Arby’s interface now gives her access to the ac-
tions, which she can use to write her conditional. After Arby
consumes her conditional card to implement an if statement,
JoJo and Arby decide to test their code, so JoJo clicks on the
Run Code button. Their code is run against some test cases
and the results are displayed below the prompt.

Play continues until JoJo and Arby deplete the deck, which
triggers the failure condition and resets the game. Eventually,
they pass all test cases and Arby clicks Submit Code to win.

5 STUDY DESIGN
To evaluate whether Pyrus encourages novices to plan and
collaborate effectively, we conducted a within-subjects study
in which pairs worked on programming challenges using
both Pyrus and pair programming. The study was conducted
as a half-day JavaScript bootcamp, meaning that everyone
participated in the study on a single day. We were interested
in evaluating (1) whether novices plan more in Pyrus, and
(2) whether novices participate more equally in Pyrus.

Participants
Eighteen undergraduate students at a large private university
(three female) participated in our study. They were recruited
through a department mailing list. The study was presented
as a bootcamp that would teach participants JavaScript fun-
damentals, give them an opportunity to practice solving pro-
gramming challenges, and contribute to research. In order to
maintain consistent level of experience, we invited students
who had taken CS1 and CS2 but had no experience with
JavaScript to participate. We chose this population because
these students had enough experience to solve programming
challenges that required problem-solving skills, and were
unlikely to get stuck on syntax errors. While this population
had more experience than the participants of most studies
of novice programmers, we think they were appropriate for
this study given our research goals. All participants provided
informed consent for participation in the study, and were
compensated with a $60 Amazon gift card for their time.

Procedure
First, participants were led through a 60-minute JavaScript
tutorial by the authors. Next, they were split into pairs and
worked on problems in one of two environments (Pyrus and

pair programming) for 45 minutes. Following this problem-
solving session, they were given a 30-minute break, during
which some students were interviewed and others filled out
an online survey. Next, they worked on problems in the other
environment for 45 minutes, followed by another 30-minute
break for interviews and surveys.

JavaScript Tutorial. While each of our participants had pro-
gramming experience, none was familiar with JavaScript.
Therefore, to maintain a relatively even skill level and en-
sure that participants could work on JavaScript program-
ming challenges, we first provided a 60-minute tutorial on
JavaScript. This tutorial was designed by the authors and led
by the first author. It covered the fundamentals of JavaScript
syntax and programming constructs that participants would
need to complete the challenges, including variables, built-
in methods, and control-flow structures. Students practiced
writing code in exercises during the tutorial, and all authors
were available to answer questions.

Problem-Solving Sessions. We counterbalanced the problem-
solving sessions to reduce order effects. After the tutorial,
participants were randomly split into two groups and paired,
such that one group had five pairs and the other had four. Par-
ticipants in the first group solved problems in pair program-
ming during the first session and Pyrus during the second,
while participants in the second group did the opposite.

Before each programming session, one of the researchers
described the environment that the participants would be
working with. For pair programming, the researcher played
a tutorial video explaining that the partners would work on
a single computer, and that one would be the pilot while
the other would be the co-pilot. The partners were told they
should switch roles every 10 minutes, but this was not en-
forced. For Pyrus, the researcher first described the game
and the game rules. Then, the researcher played a tutorial
video showing an example of someone interacting with the
Pyrus interface. During the problem-solving sessions, part-
ners sat next to each other and were able to discuss freely.
The researchers were available to answer any questions par-
ticipants had about the two interfaces and the Pyrus game
rules. We did not answer any questions about JavaScript or
approaches for solving the challenges, but instructed partici-
pants to use the Internet as a resource.

To keep the two conditions as similar as possible, partici-
pants worked on the pair programming challenges in a web
interface that was equivalent to Pyrus, but without any of
the game mechanics (Figure 2). During pair programming,
the pairs shared a single computer, rather than each typing
on their own computer as in Pyrus, to emulate the tradi-
tional pair programming protocol that has been studied in
educational contexts [45, 62].

Figure 2: The pair programming interface resembles Pyrus
to minimize differences between the two conditions.

We designed a sequence of four JavaScript programming
problems for each of the programming sessions and partici-
pants worked on the problems in order. We sourced problems
from the introductory programming website CodingBat1 and
also used simplified versions of problems found in Cracking
the Coding Interview2. The problems were ranked in difficulty
based on length, complexity of the solution, and variance
in possible solution approaches, and then ordered such that
they increased in difficulty. Our goal was to ensure that stu-
dents with higher levels of incoming skill would not finish
all problems within the given 45 minute time period.

Interviews and Surveys. During the 30minutes following each
programming session, a subset of participants were inter-
viewed about their experience. We interviewed ten randomly
selected participants after the first session, and eight of those
same participants after the second session (fewer due to
a limited availability of researchers). We followed a semi-
structured interviewing protocol, asking questions about the
pair programming experience (e.g. “How did you behave when
it was your partner’s turn to write the code?”) and the Pyrus
experience (e.g. “How did you decide what actions you would
take on your turn?”). At the end of the second interview, we
also asked questions that encouraged participants to directly
compare the two experiences (e.g. “Compare and contrast
your experience pair programming in the normal editor and
in Pyrus. Did you approach solving challenges differently?”).
All participants who were not interviewed by a researcher
completed online surveys that asked the same questions as
the semi-structured interviews.

6 DATA ANALYSIS
We collected data from a variety of sources during our study,
and apply both qualitative and quantitative approaches to
analyze that data. Below we present each of our data sources,
along with our measures and analysis process for each.

1https://codingbat.com/java
2http://www.crackingthecodinginterview.com/

Programming Session Transcripts
During programming sessions, we recorded audio of the dia-
log between pairs as they worked to solve problems, with the
goal of learning about their problem-solving process and the
quality of their collaborations. The resulting 13.5 hours of
audio data were transcribed, with an associated timestamp
for every line in the transcript. To address our research ques-
tions, we focused our analysis on understanding whether
Pyrus encourages novices to plan in advance and participate
equally in problem solving, as per our definition of effective
collaboration. We developed a coding scheme that allowed
us to quantify the amount of time pairs spent engaged in
different stages of the problem-solving process, as well as
the amount of time each partner spent in the pilot role.
To build our codebook for problem-solving stages, we

took a deductive approach [48]. We first created codes for
four problem-solving stages that have been identified as part
of the programming process in the literature [19, 40]: (1)
understanding the problem, (2) planning the solution, (3)
implementing the solution, and (4) debugging the solution.
We then amended and refined our codebook by following
a data-driven inductive process [48]. We completed a com-
prehensive reading of the transcript files, refined our code
definitions, and identified three additional problem-solving
stages specific to the Pyrus environment: (5) planning around
Pyrus, (6) interacting with Pyrus, and (7) implementing out-
side of IDE. Each line of the transcript was codedwith at most
one problem-solving stage, and the stages could occur in any
order. Two authors worked together to code a training set of
data, and met to resolve any conflicts and iteratively refine
the codebook definitions. Then they independently coded
11% of the data (two transcripts) and achieved an inter-rater
reliability Cohen’s kappa 0.85 (values above 0.81 are consid-
ered “almost perfect” [15, 35]). The two authors then divided
up and independently coded the rest of the transcripts.
In addition to coding each line in the transcript with a

problem-solving stage, the authors also coded which partner
was in the pilot role for each line. In pair programming,
where the partners shared one computer, the pilot was the
person who was typing. In Pyrus, where the partners each
worked on their own laptop, the pilot was the person whose
turn it was in the game. It was straightforward to determine
who was the pilot from the audio data; participants talked
about switching roles, and typing was audible.
Once the transcripts were coded, we used a quantitative

approach to analyze the data. To capture the pairs’ problem-
solving process, we calculated the amount of time they spent
in each problem-solving stage using the timestamps in the
transcripts. To measure planning in advance, we also calcu-
lated the amount of time spent in the “planning the solution”
stage before the first “implementing the solution” stage. To

capture the equality of pairs’ collaboration, we calculated the
amount of time each partner spent in the pilot role. For all of
these measures, we computed time using the timestamps as-
sociated with each line in the transcript. We chose to analyze
time rather than counts of coded statements to ensure that
our analysis would not inflate code counts for the pairs who
were more talkative. We used a repeated measures ANOVA
to analyze these within-subjects measures.

Programming Session Log Data
During the programming sessions we also collected log data
from the Pyrus and pair programming interfaces. For each
problem that the pair worked on we recorded their code in
the editor every 30 seconds and the number of test cases the
pair passed when they ran their code or submitted their final
solution. Our goal in analyzing this data was to understand
how quickly pairs wrote code and solved problems in the
two conditions. We computed two measures with this data:
(1) the amount of time it took for pairs to correctly pass all
test cases for a problem, and (2) the number of problems
solved (a problem is considered solved when all test cases
have been passed). We used a repeated measures ANOVA to
analyze these within-subjects measures.

Interview Transcripts and Survey Responses
Finally, we saved responses to the surveys and audio recorded
interviews with participants. The resulting 3.6 hours of inter-
view audio data were transcribed. We analyzed this data by
conducting a thematic analysis [10]. All four authors began
with a comprehensive reading of the transcripts to identify
codes. Then we met and discussed our proposed codes to de-
velop a codebook. Each interview was coded by one author,
checked by another, and any disagreements between the
two authors were discussed by all four. Our final codebook
includes 73 codes, and is organized in a hierarchical struc-
ture with top-level codes such as “problem-solving process,”
“collaboration roles,” and “Pyrus game mechanics.”

Two authors independently coded four interviews (22.22%
of data). We used a pooled PABAK Kappa to determine inter-
rater reliability, which accounts for the prevalence of codes
and potential bias between observers [11, 15, 18]. Our Kappa
was 0.61 (0.61–0.8 is “substantial” strength of agreement)
[35]). After coding the interview and survey data, related
codes were clustered into themes that represent the high-
level findings from our analysis.

7 RESULTS
Our results show that Pyrus encouraged novices to plan
in advance and to participate more equally, the two behav-
ioral outcomes we targeted during the game design process.
However, we also found that some participants found Pyrus
frustrating and inefficient. We unpack these findings below.

0

5

10

15

20

Understanding Planning Implementing Debugging

Ti
m

e
in

 M
in

ut
es

Problem-Solving Stage

Pyrus

Control

Figure 3: Amount of time pairs spent in each of the four
main problem-solving stages while working on problems in
Pyrus and pair programming.

Pyrus encouraged novices to plan in advance
Across all three data sources, we found evidence that novices
planned their solutions in advance more in Pyrus than in pair
programming. We consider planning in advance to include
time spent in two problem-solving stages, the planning the
solution stage and the planning around Pyrus stage. When
working in Pyrus, plans for how to solve the problem were
intertwined with plans for how to manage resources like
cards and turns, and thus both are essential parts of planning
in advance. We found that pairs in Pyrus planned for 14.07
minutes per session on average, compared to 7.41 minutes
in the control (F(1,8)=3.48, p<0.001), as shown in Figure 3.
Even when we only consider time spent in the planning the
solution stage, during which pairs exclusively planned their
solution to the problem, we saw that pairs planned for an
average of 10.4 minutes per session in Pyrus compared to
7.41 in pair programming. However, given the size of this
difference and our small sample size, this was not statistically
significant (F(1,8)=0.43, p=0.10).

This finding was further supported by our interview and
survey data. Six out of 18 participants (representing five
out of nine total pairs) mentioned that they did not plan in
advance while pair programming, compared to zero partic-
ipants in Pyrus. In contrast, 16 out of 18 participants (rep-
resenting all nine pairs) mentioned that they planned in
advance in Pyrus, compared to five out of 18 participants
(representing four out of nine pairs) in pair programming.

Overall, we found that participants approached problem
solving differently in the two conditions. We analyzed the
time when pairs first entered the implementation stage in
the problem-solving session transcript, and found that pairs
start implementing significantly earlier in pair programming

(F(1,8)=0.783, p<0.05), at an average time of 2.87 minutes com-
pared to 7.45 minutes in Pyrus. In interviews, multiple partic-
ipants mentioned that they used a trial-and-error approach
while pair programming. For example, PS39 stated “We were
able to tackle the code without having to spend too much time
thinking of solutions. Instead we addressed issues as they came
up.” This finding is consistent with prior work showing that
novices do not plan solutions in advance [37, 60].

In contrast, pairs in Pyrus planned more of their solutions
before beginning to implement. PS30 describes this differ-
ence: “In Pyrus, I had to think much further ahead. This actu-
ally made it easier to think about the project as a whole, though.
Instead of tackling one bit at a time, I started to look more into
the big picture of it all.” When talking about their strategy in
Pyrus, five participants (representing three pairs) mentioned
that they wrote their solutions on paper before implementing
them in the editor. An analysis of the problem-solving codes
showed that pairs spent an average of 2.53 minutes planning
before writing their first line of code in Pyrus, compared to
0.47 minutes in pair programming (F(1,8)=0.68, p<0.05).

We also found that these different approaches to problem-
solving necessitated different approaches to debugging. Pairs
spent more time debugging in pair programming, an average
of 7.53 minutes compared to 4.70 minutes in Pyrus, although
this differencewas not significant (F(1,8)=0.41, p=0.11).When
talking about their pair programming experience, six par-
ticipants, (representing five distinct pairs) mentioned com-
pletely abandoning their partial solutions to start over from
scratch. For example, PS41 said “There were several times that
we had to start over when we realized our approach was too
complicated and there were easier ways. Starting over allowed
us to have a fresh slate.” PS31 expounds further on the de-
bugging process in pair programming: “Even though we got
more problems done, and we were doing them quicker, it was
a lot more error. There was a lot of bugs and a lot of things
we had to correct along the way.” This suggests that during
pair programming, some participants had errors in their so-
lution ideas or approaches that were not revealed until the
debugging process. Participants also mentioned that they
made fewer mistakes in Pyrus; PS45 described the difference
in strategy in the two conditions, and how this impacted the
number of mistakes he and his partner made:
“[In Pyrus] it was just a lot more organized. We would
prettymuchwrite down almost exactly what wewere going
to do, and then we would just put it in. Then, we’d have to
kind of play the game where we figure out who has what
things at their disposal. Then, for the pair programming
it was like we could afford to make a lot more mistakes.
We didn’t have to write down our whole approach and we
could just kind of start writing... But, I do think that our
process was kind of a lot less organized and clean.”

These findings suggest that the problem-solving approaches
that participants took as a result of the programming environ-
ment impacted the amount of debugging that was necessary
to arrive at a correct solution.
When talking about their problem-solving approach in

Pyrus, many participants mentioned that the game mechan-
ics influenced their behavior. Ten participants mentioned
that they prioritized plans based on the available cards, and
five participants mentioned beingmore careful in their imple-
mentations because of the failure condition. PS44 described
the strategy he and his partner used in Pyrus: “we first looked
at the cards in hand. We then wrote out our plans to solve the
challenge on paper.” PS45 mentioned that the failure condi-
tion influenced his process, stating “[in Pyrus] you had to be
careful, because otherwise you’d lose if you did it wrong... You
really had to have a plan to be using your resources properly.”
These statements indicate that the Pyrus game mechanics
influenced the way participants approached the problem-
solving process, incentivizing them to plan their solutions
in advance and be more deliberate while programming.

Pyrus encourages pairs to participate more equally
Through our data analysis, we found evidence that pairs
participated more equally in problem solving in Pyrus than
when pair programming. We analyzed the codes that cap-
tured when each partner was in the pilot role by calculating
the difference in typing time between the two partners. We
found that this difference was significantly smaller in Pyrus
(F(1,8)=1.17, p<0.05); in Pyrus the difference in time spent
typing between participants was 5.69 minutes, compared to
a 17.78 minute difference in pair programming. This can be
partially explained by the fact that for five pairs in the pair
programming condition, the less-active typer spent under
10 of the 45 minutes in the pilot role.

Overall, we found that participants took on different roles
in pair programming. PS31 stated simply, “It was less of a
contributing when you were not typing, and more contribution
when you were typing.” Ten participants described the pilot as
being the decision maker or leader. For example, PS46 states
“Our process, I guess, just like kind of lead person who just kind
of ... did it, I guess? Unless they got like stuck or something.”
PS35 said “We each implemented our own solutions when it
was our time to work because we thought it would be easier
to do our own solutions than explain our solution to the other
person.” In contrast, many described the role of the co-pilot
as following along, pointing out small errors, and helping
to debug. For example, PS41 states “I let them code their
solution to the problem because it was how we decided to work.
I watched for errors and commented when I saw them.” Some
participants also mentioned feeling lost when in the co-pilot
role; PS32 states, “It’s really just like trying to interpret what
they’re doing, as opposed to interpreting what we’re doing .”

These findings suggest that the pilot and co-pilot serve very
different roles in pair programming, and that working in
pairs does not inherently encourage collaborative planning.
In Pyrus, participants rarely mentioned differences be-

tween the roles of the typer and the observer. For example,
when describing the roles in Pyrus, PS38 states “We talked
about what we needed to do first, and then whoever’s turn
it was just wrote it. There wasn’t that much of a difference
between whose turn it was.” Six participants explicitly men-
tioned that they felt they were on the same page with their
partner when working in Pyrus. When discussing why they
collaborated equally in Pyrus, participants mentioned the
enforced turn-taking mechanic. PS33 stated:
“In other classes when you work in pairs, normally one
person does all the typing, and I feel like that can really
easily lead to an imbalance as far as learning goes. Forcing
each person [in Pyrus] to type this way, I think, really does
help make both people be aware of what’s going on.”

PS45 summarized the difference between Pyrus and pair
programming nicely:
“[In Pyrus] we were switching off who was writing what.
It was just completely necessary to be really clear about
what we were both doing from the outset. You really had to
have a plan to be using your resources properly. And then,
in [pair programming] it was just kind of like... as long as
that person kind of had the framework in their mind we
didn’t need everyone to know everything completely.”

These findings show that the enforced turns mechanic in
Pyrus changed theway that pairs collaboratedwhile working
on programming problems, resulting in more active partici-
pation from the non-dominant partner and a deeper shared
understanding of the problem approach and solution.

Novices found Pyrus frustrating and inefficient
While we found evidence that Pyrus encourages more plan-
ning in advance and more equal participation, many partici-
pants found that Pyrus restricted their ability to implement
code. The lack of flexibility led to frustration. For example,
PS46 said “It’s just really annoying when you can see ... You
know exactly what I need to type, but then it just won’t let
you do it”. Additionally, PS43 stated “I think a lot of coding
is trying something, then failing. It’s a system which doesn’t
allow you to fail, without failing completely, and restarting
from scratch, which I think is really, really unhelpful”.
However, not all participants found the experience frus-

trating; for example PS45 stated: “I probably wouldn’t write
out my whole process beforehand. But working in Pyrus, we
did, which I actually think it made it a lot more efficient. And I
think we realized a lot of things that we would run into earlier
than if we would have just started writing, so that was good.”
Participants also noted that writing code in Pyrus was

slower than in pair programming, a point that came up in

the interviews and surveys of ten participants, even though
the bootcamp and activities placed no emphasis on program-
ming speed. In our analysis of the log data, we found that
pairs did work more slowly in Pyrus, completing an average
of 0.78 problems per session on average compared to 2.56 for
pair programming (F(1,8)=1.83, p<0.01). This is not surpris-
ing, given that Pyrus required pairs to plan not only their
solutions, but also how to implement them with the available
cards and actions. Our analysis of the problem-solving stages
showed that pairs spent an average of 4.02 minutes planning
around Pyrus and 2.53 minutes interacting with Pyrus, a sub-
stantial amount of additional time. Interestingly, attitudes of
frustration towards slower modes of programming have also
been observed among novices in pair programming [13].

Four participants did note that they would like to incorpo-
rate some of the strategies they used in Pyrus into their own
programming more often. For example, PS39 stated:“When
coding in Pyrus, I was forced to formulate a plan before begin-
ning. We also had to come to an agreement on how to tackle
the problem. This is something I rarely do when coding on
my own, but something I wish I did more of.” When asked if
there is any context in which they would like to use Pyrus,
PS39 said “I would use Pyrus if I was working on a code with
someone to learn or for fun.” However, several participants
said they would not like to use Pyrus in any contexts. For
example, PS43 said “I’m tempted to say that there is nothing
that I would want my normal coding experience to resemble
this coding experience.” This suggests that further iteration
on the game design is needed to ensure that the experience
is fun, particularly to make sure the constraints are not so
restrictive as to cause frustration. However, it is also interest-
ing to note that novices seem to value efficiency over equal
participation and time spent planning their solutions, which
could be a result of their prior programming experiences and
their expectations around coding.

8 CONCLUSION
Our findings provide preliminary evidence that behavior-
centered game design can be effective in guiding the design
of a game that encourages players to practice a set of target
behaviors, even when their natural inclination may be to
do the opposite. In our within-subjects study, we found that
Pyrus successfully encouraged novices to plan in advance
and participate equally in problem solving, the behaviors
we targeted in our design. Pairs in Pyrus spent twice the
amount of time planning as they did in pair programming, a
significant increase. There was also a significantly smaller
difference in the amount of time each partner spent in the
active pilot role. Most importantly, participants described
how their problem-solving and collaborative behaviors were
influenced by game mechanics like the failure condition,

distributed resources, and enforced turns, showing how me-
chanics can be used to drive behavior in educational games.
While some participants enjoyed playing Pyrus, many

found the game’s constraints frustrating and complained
that Pyrus was less efficient than pair programming. We be-
lieve some of these frustrations could be addressed through
design iterations to improve game balance. For example, if
we ensure that players have access to the cards they need to
solve each problem in the first half of the deck, they may ex-
perience less frustration. Participants’ complaints that Pyrus
is “inefficient” and “slow” suggest that novices value solving
problems quickly, and may prioritize this over developing
a deep understanding of the problem and solution. Perhaps
learners would be less likely to fixate on pace and perfor-
mance if the game was explicitly framed around the goal of
developing an effective problem-solving process.
Furthermore, while Pyrus successfully encouraged plan-

ning, we do not yet knowwhether practicing planning through
Pyrus teaches novices transferable problem-solving skills.
Even though some participants recognized that planning
in advance was good for their understanding and problem-
solving success, the pairs who played Pyrus first did not
adopt those behaviors in the following pair programming
session. Given that participants only interacted with Pyrus
for 45 minutes, this lack of transfer is unsurprising. How-
ever, it is possible that Pyrus may over-scaffold planning
and equal participation, which has been an issue in other
popular educational games [41]. In the future, we envision
integrating Pyrus into classroom lessons that teach problem-
solving to help students practice behaviors like planning,
and supporting transfer through activities like reflection
[55]. Additional research in real-world contexts is needed to
understand whether and how planning practice in Pyrus can
be transferred outside of the game context.

This exploratorywork contributes a new educational game
Pyrus, which we see as a compelling proof-of-concept for
behavior-centered game design. However, there is still much
to learn about this methodology and how to apply it in ser-
vice of higher-level learning goals. In future work, we plan to
design additional games using a behavior-centered approach
to better understand the strengths and weaknesses of this
methodology. We also plan to analyze existing educational
games through a behavior-centered lens to better under-
stand the mechanics that lead to their success. However, this
work takes an important initial step towards improving our
understanding of how to design effective educational games.

ACKNOWLEDGMENTS
We thank the students and faculty in the Design, Technology,
and Research program and the Delta Lab for their valuable
feedback. This work was supported by Undergraduate Re-
search Grants from Northwestern University.

REFERENCES
[1] Vincent Aleven, EbenMyers, Matthew Easterday, and Amy Ogan. 2010.

Toward a framework for the analysis and design of educational games.
In Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), 2010
Third IEEE International Conference on. IEEE, 69–76.

[2] Basma S Alqadi and Jonathan I Maletic. 2017. An Empirical Study
of Debugging Patterns Among Novices Programmers. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. ACM, 15–20.

[3] Ian Arawjo, Cheng-Yao Wang, Andrew C Myers, Erik Andersen, and
François Guimbretière. 2017. Teaching programming with gamified
semantics. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems. ACM, 4911–4923.

[4] E Aronson, N Blaney, C Stephan, J Sikes, and M Snapp. 1978. The
Jigsaw Classroom. Sage Publishing Company.

[5] Theresa Beaubouef and John Mason. 2005. Why the high attrition rate
for computer science students: some thoughts and observations. ACM
SIGCSE Bulletin 37, 2 (2005), 103–106.

[6] Kent Beck and Erich Gamma. 2000. Extreme programming explained:
embrace change. addison-wesley professional.

[7] Jens Bennedsen and Michael E Caspersen. 2007. Failure rates in intro-
ductory programming. ACM SIGcSE Bulletin 39, 2 (2007), 32–36.

[8] Judith Bishop, R Nigel Horspool, Tao Xie, Nikolai Tillmann, and
Jonathan de Halleux. 2015. Code Hunt: Experience with coding con-
tests at scale. In Proceedings of the 37th International Conference on
Software Engineering-Volume 2. IEEE Press, 398–407.

[9] Acey Boyce and Tiffany Barnes. 2010. BeadLoom Game: using game
elements to increase motivation and learning. In Proceedings of the Fifth
International Conference on the Foundations of Digital Games. ACM,
25–31.

[10] Virginia Braun, Victoria Clarke, and Gareth Terry. 2014. Thematic
analysis. Qual Res Clin Health Psychol 24 (2014), 95–114.

[11] Ted Byrt, Janet Bishop, and John B Carlin. 1993. Bias, prevalence and
kappa. Journal of clinical epidemiology 46, 5 (1993), 423–429.

[12] Jill Cao, Irwin Kwan, Rachel White, Scott D Fleming, Margaret Burnett,
and Christopher Scaffidi. 2012. From barriers to learning in the Idea
Garden: An empirical study. In Visual Languages and Human-Centric
Computing (VL/HCC), 2012 IEEE Symposium on. IEEE, 59–66.

[13] Edgar Acosta Chaparro, Aybala Yuksel, Pablo Romero, and Sallyann
Bryant. 2005. Factors affecting the perceived effectiveness of pair
programming in higher education. In Proc. PPIG. 5–18.

[14] Douglas B Clark, Emily E Tanner-Smith, and Stephen S Killingsworth.
2016. Digital games, design, and learning: A systematic review and
meta-analysis. Review of educational research 86, 1 (2016), 79–122.

[15] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provi-
sion for scaled disagreement or partial credit. Psychological bulletin
70, 4 (1968), 213.

[16] Thomas M Connolly, Elizabeth A Boyle, Ewan MacArthur, Thomas
Hainey, and James M Boyle. 2012. A systematic literature review of
empirical evidence on computer games and serious games. Computers
& Education 59, 2 (2012), 661–686.

[17] Sabrina Haskell Culyba. 2018. The Transformational Framework: A
process tool for the development of Transformational games. ETC Press.

[18] Han De Vries, Marc N Elliott, David E Kanouse, and Stephanie S Teleki.
2008. Using pooled kappa to summarize interrater agreement across
many items. Field Methods 20, 3 (2008), 272–282.

[19] Fadi P Deek, Murray Turoff, and James A McHugh. 1999. A common
model for problem solving and program development. IEEE Transac-
tions on Education 42, 4 (1999), 331–336.

[20] Pierre Dillenbourg. 2002. Over-scripting CSCL: The risks of blending
collaborative learning with instructional design.

[21] Pierre Dillenbourg and Daniel Schneider. 1995. Mediating the mecha-
nisms which make collaborative learning sometimes effective. Interna-
tional Journal of Educational Telecommunications 1, 2 (1995), 131–146.

[22] Michael Eagle and Tiffany Barnes. 2008. Wu’s castle: teaching arrays
and loops in a game. In ACM SIGCSE Bulletin, Vol. 40. ACM, 245–249.

[23] Alireza Ebrahimi. 1994. Novice programmer errors: language con-
structs and plan composition. In International Journal of Human-
Computer Studies, Vol. 41. 457–480.

[24] Alireza Ebrahimi and Christina Schweikert. 2006. Empirical study of
novice programming with plans and objects. In ACM SIGCSE Bulletin,
Vol. 38. ACM, 52–54.

[25] James Paul Gee. 2003. What video games have to teach us about
learning and literacy. Computers in Entertainment (CIE) 1, 1 (2003),
20–20.

[26] Anuradha A Gokhale. 1995. Collaborative learning enhances critical
thinking. Volume 7 Issue 1 (fall 1995) (1995).

[27] Brian Hanks and Matt Brandt. 2009. Successful and unsuccessful
problem solving approaches of novice programmers. In ACM SIGCSE
Bulletin, Vol. 41. ACM, 24–28.

[28] BjörnHartmann, DanielMacDougall, Joel Brandt, and Scott R Klemmer.
2010. What would other programmers do: suggesting solutions to
error messages. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1019–1028.

[29] Andrew Hicks, Barry Peddycord, and Tiffany Barnes. 2014. Building
games to learn from their players: Generating hints in a serious game.
In International Conference on Intelligent Tutoring Systems. Springer,
312–317.

[30] Cindy EHmelo-Silver. 2013. The international handbook of collaborative
learning. Routledge.

[31] Britton Horn, Christopher Clark, Oskar Strom, Hilery Chao, Amy J
Stahl, Casper Harteveld, and Gillian Smith. 2016. Design insights into
the creation and evaluation of a computer science educational game.
In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education. ACM, 576–581.

[32] Tony Jenkins. 2002. On the difficulty of learning to program. In Pro-
ceedings of the 3rd Annual Conference of the LTSN Centre for Information
and Computer Sciences, Vol. 4. Citeseer, 53–58.

[33] Dominic Kao and D Fox Harrell. 2015. Mazzy: A STEM Learning Game..
In FDG.

[34] Judy Kay, Michael Barg, Alan Fekete, Tony Greening, Owen Hollands,
Jeffrey H Kingston, and Kate Crawford. 2000. Problem-based learning
for foundation computer science courses. Computer Science Education
10, 2 (2000), 109–128.

[35] J Richard Landis and Gary G Koch. 1977. The measurement of observer
agreement for categorical data. biometrics (1977), 159–174.

[36] H Chad Lane and Kurt VanLehn. 2005. Teaching the tacit knowledge
of programming to novices with natural language tutoring. Computer
Science Education 15, 3 (2005), 183–201.

[37] Jari M Lavonen, Matti Lattu, and Veijo P Meisalo. 2001. Problem
Solving with an Icon Oriented Programming Tool: A Case Study in
Technology Education. Journal of Technology Education 12, 2 (2001),
21–34.

[38] Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina
Charters, Amber Horvath, Fanny Luor, Jill Cao, Catherine Law,Michael
Beswetherick, et al. 2014. Principles of a debugging-first puzzle game
for computing education. In Visual Languages and Human-Centric
Computing (VL/HCC), 2014 IEEE Symposium on. IEEE, 57–64.

[39] Marcia C Linn and Michael J Clancy. 1992. Can experts’ explanations
help students develop program design skills? International Journal of
Man-Machine Studies 36, 4 (1992), 511–551.

[40] Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christo-
pher J Mendez, and Margaret M Burnett. 2016. Programming, problem

solving, and self-awareness: effects of explicit guidance. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, 1449–1461.

[41] Yanjin Long and Vincent Aleven. 2017. Educational game and intel-
ligent tutoring system: A classroom study and comparative design
analysis. ACM Transactions on Computer-Human Interaction (TOCHI)
24, 3 (2017), 20.

[42] Merrilea J Mayo. 2009. Video games: A route to large-scale STEM
education? Science 323, 5910 (2009), 79–82.

[43] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Di-
anne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian
Utting, and Tadeusz Wilusz. 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students.
In Working group reports from ITiCSE on Innovation and technology in
computer science education. ACM, 125–180.

[44] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fer-
nald. 2002. The effects of pair-programming on performance in an
introductory programming course. ACM SIGCSE Bulletin 34, 1 (2002),
38–42.

[45] Charlie McDowell, Linda Werner, Heather E Bullock, and Julian Fer-
nald. 2003. The impact of pair programming on student performance,
perception and persistence. In Software Engineering, 2003. Proceedings.
25th International Conference on. IEEE, 602–607.

[46] Bruce M McLaren, Lars Bollen, Erin Walker, Andreas Harrer, and
Jonathan Sewall. 2005. Cognitive tutoring of collaboration: Develop-
mental and empirical steps towards realization. In Proceedings of th
2005 conference on Computer support for collaborative learning: learning
2005: the next 10 years! International Society of the Learning Sciences,
418–422.

[47] Edward F Melcer and Katherine Isbister. 2018. Bots & (Main) Frames:
Exploring the Impact of Tangible Blocks and Collaborative Play in
an Educational Programming Game. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, 266.

[48] Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2013.
Qualitative data analysis. Sage.

[49] Mark L Miller. 1979. A structured planning and debugging environ-
ment for elementary programming. International Journal of Man-
Machine Studies 11, 1 (1979), 79–95.

[50] Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Sub-
goals, context, and worked examples in learning computing problem
solving. In Proceedings of the eleventh annual international conference
on international computing education research. ACM, 21–29.

[51] Engineering National Academies of Sciences and Medicine. 2018. As-
sessing and Responding to the Growth of Computer Science Undergrad-
uate Enrollments. The National Academies Press, Washington, DC,
Chapter Front Matter.

[52] Harold F O’Neil, RichardWainess, and Eva L Baker. 2005. Classification
of learning outcomes: Evidence from the computer games literature.
The Cirriculum Journal 16, 4 (2005), 455–474.

[53] Eleanor O’Rourke, Kyla Haimovitz, Christy Ballweber, Carol Dweck,
and Zoran Popović. 2014. Brain points: a growth mindset incentive
structure boosts persistence in an educational game. In Proceedings of
the SIGCHI conference on human factors in computing systems. ACM,
3339–3348.

[54] Roy D Pea. 1983. Logo Programming and Problem Solving.[Technical
Report No. 12.]. (1983).

[55] David N Perkins, Gavriel Salomon, et al. 1992. Transfer of learning.
International encyclopedia of education 2 (1992), 6452–6457.

[56] Leen-Kiat Soh. 2006. Implementing the jigsaw model in CS1 closed
labs. In ACM SIGCSE Bulletin, Vol. 38. ACM, 163–167.

[57] Elliot Soloway. 1986. Learning to program= learning to construct
mechanisms and explanations. Commun. ACM 29, 9 (1986), 850–858.

[58] Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda Thomas, Den-
nis Bouvier, Roger Frye, James Paterson, Michael Caspersen, Yifat
Ben-David Kolikant, Juha Sorva, et al. 2013. A fresh look at novice
programmers’ performance and their teachers’ expectations. In Pro-
ceedings of the ITiCSE working group reports conference on Innovation
and technology in computer science education-working group reports.
ACM, 15–32.

[59] Christopher Watson and Frederick WB Li. 2014. Failure rates in intro-
ductory programming revisited. In Proceedings of the 2014 conference
on Innovation & technology in computer science education. ACM, 39–44.

[60] Noreen M Webb, Philip Ender, and Scott Lewis. 1986. Problem-solving
strategies and group processes in small groups learning computer
programming. American Educational Research Journal 23, 2 (1986),
243–261.

[61] ViktorWendel, Michael Gutjahr, Stefan Göbel, and Ralf Steinmetz. 2012.
Designing collaborative multiplayer serious games for collaborative
learning. Proceedings of the CSEDU 2 (2012), 199–210.

[62] Laurie Williams and Richard L Upchurch. 2001. In support of student
pair-programming. In ACM SIGCSE Bulletin, Vol. 33. ACM, 327–331.

[63] Leon E Winslow. 1996. Programming pedagogy–a psychological
overview. ACM Sigcse Bulletin 28, 3 (1996), 17–22.

[64] Michael F Young, Stephen Slota, Andrew B Cutter, Gerard Jalette,
Greg Mullin, Benedict Lai, Zeus Simeoni, Matthew Tran, and Mariya
Yukhymenko. 2012. Our princess is in another castle: A review of
trends in serious gaming for education. Review of educational research
82, 1 (2012), 61–89.

[65] Natalia Padilla Zea, José Luís González Sánchez, Francisco L Gutiérrez,
Marcelino J Cabrera, and Patricia Paderewski. 2009. Design of educa-
tional multiplayer videogames: A vision from collaborative learning.
Advances in Engineering Software 40, 12 (2009), 1251–1260.

	Abstract
	1 Introduction
	2 Related Work
	Problem Solving in Programming
	Collaborative Learning
	Educational Games

	3 Behavior-Centered Game Design
	Problem-solving
	Collaboration

	4 Pyrus System
	Setup
	Play
	Representative scenario

	5 Study Design
	Participants
	Procedure

	6 Data Analysis
	Programming Session Transcripts
	Programming Session Log Data
	Interview Transcripts and Survey Responses

	7 Results
	Pyrus encouraged novices to plan in advance
	Pyrus encourages pairs to participate more equally
	Novices found Pyrus frustrating and inefficient

	8 Conclusion
	Acknowledgments
	References

